分析 (1)由遞推關(guān)系:6=a2=2a1,解得a1,進而得出.
(2)集合M存在一個元素是3的倍數(shù),不妨設(shè)ak是3的倍數(shù),由an+1=${a_{n+1}}=\left\{\begin{array}{l}2{a_n},{a_n}≤p\\ 2{a_n}-6,{a_n}>p\end{array}\right.({n=1,2,…})$,p=18.可歸納證明對任意n≥k,an是3的倍數(shù).
解答 (1)解:∵${a_{n+1}}=\left\{\begin{array}{l}2{a_n},{a_n}≤p\\ 2{a_n}-6,{a_n}>p\end{array}\right.({n=1,2,…})$,p=90,a2=6,
∴6=a2=2a1,解得a1=3.
∴a3=2a2=12,a4=2a3=24,a5=2a4=48,a6=2a5=96,a7=2a6-6=186.
(2)證明:∵集合M存在一個元素是3的倍數(shù),不妨設(shè)ak是3的倍數(shù),
由an+1=${a_{n+1}}=\left\{\begin{array}{l}2{a_n},{a_n}≤p\\ 2{a_n}-6,{a_n}>p\end{array}\right.({n=1,2,…})$,p=18.可歸納證明對任意n≥k,an是3的倍數(shù).
如果k=1,M的所有元素都是3的倍數(shù);
如果k>1,∵ak=2ak-1,或ak=2ak-1-6,∴2ak-1是3的倍數(shù);于是ak-1是3的倍數(shù);
類似可得,ak-2,…,a1都是3的倍數(shù);
從而對任意n≥1,an是3的倍數(shù);
綜上,若集合M存在一個元素是3的倍數(shù),則集合M的所有元素都是3的倍數(shù)
點評 本題考查了數(shù)列遞推關(guān)系的應(yīng)用,突出考查分類討論思想與等價轉(zhuǎn)化思想及推理、運算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≤2 | B. | a≤1 | C. | a≤-1 | D. | a≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 17 | C. | 19 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com