4.已知函數(shù)f(x)=x2-ax-alnx(a∈R),g(x)=-x3+$\frac{5}{2}$x2+2x-6,g(x)在[1,4]上的最大值為b,當(dāng)x∈[1,+∞)時(shí),f(x)≥b恒成立,則a的取值范圍(  )
A.a≤2B.a≤1C.a≤-1D.a≤0

分析 利用導(dǎo)數(shù)與函數(shù)的單調(diào)性關(guān)系判斷g(x)的單調(diào)性求出g(x)在[1,4]上的最大值b,對(duì)a進(jìn)行討論判斷f(x)在[1,+∞)上的單調(diào)性,令fmin(x)≥b解出a的范圍.

解答 解:g′(x)=-3x2+5x+2,令g′(x)=0得x=2或x=-$\frac{1}{3}$.
當(dāng)1≤x<2時(shí),g′(x)>0,當(dāng)2<x<4時(shí),g′(x)<0,
∴g(x)在[1,2)上單調(diào)遞增,在(2,4]上單調(diào)遞減,
∴b=g(2)=0.
∴f(x)≥0在[1,+∞)上恒成立,
f′(x)=2x-a-$\frac{a}{x}$=$\frac{2{x}^{2}-ax-a}{x}$,
令h(x)=2x2-ax-a,△=a2+8a.
(1)若△=a2+8a≤0,即-8≤a≤0,則h(x)≥0恒成立,
∴f′(x)≥0恒成立,∴f(x)在[1,+∞)上是增函數(shù),
∴fmin(x)=f(1)=1-a≥0,解得a≤1,
∴-8≤a≤0.
(2)若△=a2+8a>0,即a<-8或a>0.
令f′(x)=0得h(x)=0,解得x=$\frac{a-\sqrt{{a}^{2}+8a}}{4}$(舍)或x=$\frac{a+\sqrt{{a}^{2}+8a}}{4}$.
若a<-8,則$\frac{a+\sqrt{{a}^{2}+8a}}{4}$<0,則h(x)>0在[1,+∞)上恒成立,
∴f′(x)>0恒成立,∴f(x)在[1,+∞)上是增函數(shù),
∴fmin(x)=f(1)=1-a≥0,解得a≤1,
∴a<-8.
若0<$\frac{a+\sqrt{{a}^{2}+8a}}{4}$≤1,即0<a≤1,則h(x)>0在[1,+∞)上恒成立,
∴f′(x)≥0恒成立,∴f(x)在[1,+∞)上是增函數(shù),
∴fmin(x)=f(1)=1-a≥0,解得a≤1,
∴0<a≤1.
若$\frac{a+\sqrt{{a}^{2}+8a}}{4}$>1,即a>1時(shí),則1≤x<$\frac{a+\sqrt{{a}^{2}+8a}}{4}$時(shí),h(x)<0,當(dāng)x>$\frac{a+\sqrt{{a}^{2}+8a}}{4}$時(shí),h(x)>0.
∴1≤x<$\frac{a+\sqrt{{a}^{2}+8a}}{4}$時(shí),f′(x)<0,當(dāng)x>$\frac{a+\sqrt{{a}^{2}+8a}}{4}$時(shí),f′(x)>0.
∴f(x)在[1,$\frac{a+\sqrt{{a}^{2}+8a}}{4}$]上單調(diào)遞減,在($\frac{a+\sqrt{{a}^{2}+8a}}{4}$,+∞)上單調(diào)遞增.
此時(shí)fmin(x)<f(1)=1-a<0,不符合題意.
綜上,a的取值范圍是(-∞,1].
故選:B.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,函數(shù)最值的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=4x,則f(-$\frac{17}{2}$)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$(t∈R).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系.曲線C1的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ-3=0.
(1)求出直線l的普通方程以及曲線C1的直角坐標(biāo)方程;
(2)點(diǎn)P是曲線C1上到直線l距離最遠(yuǎn)的點(diǎn),求出這個(gè)最遠(yuǎn)距離以及點(diǎn)P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.不等式(x+1)(2-x)≤0的解集為(  )
A.{x|-1≤x≤2}B.{x|-1<x<2}C.{x|x≥2或x≤-1}D.{x|x>2或x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$ln\frac{1+ax}{1-3x}$為奇函數(shù),則實(shí)數(shù)a的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1內(nèi)任取一點(diǎn)M,則點(diǎn)M到正方體的中心的距離不大于1的概率為( 。
A.$\frac{π}{18}$B.$\frac{π}{12}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足:${a_1}∈{N^*}$,且${a_{n+1}}=\left\{\begin{array}{l}2{a_n},{a_n}≤p\\ 2{a_n}-6,{a_n}>p\end{array}\right.({n=1,2,…})$.記集合$M=\left\{{{a_n}\left|{n∈{N^*}}\right.}\right\}$.
(1)若p=90,a2=6,寫出數(shù)列{an}的前7項(xiàng);
(2)若p=18,集合M存在一個(gè)元素是3的倍數(shù),證明:M的所有元素都是3的倍數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合M={0,1,2,3},N={x|x2-x-2≤0},P=M∩N,則集合P的子集共有( 。
A.2個(gè)B.4個(gè)C.6個(gè)D.8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)復(fù)數(shù)z=(m2-2m-15)+(m2+4m+3)i,試求實(shí)數(shù)m的值,使:
(1)z是實(shí)數(shù);      
(2)z是純虛數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案