設集合M={x|x 2+3x+2<0},集合N={x|(
1
2
x≤4},則 M∪N=( 。
A、{ x|x≥-2}
B、{ x|x>-1}
C、{ x|x<-1}
D、{ x|x≤-2}
考點:并集及其運算
專題:集合
分析:求出集合的等價條件,根據(jù)集合的基本運算即可得到結(jié)論.
解答: 解:M={x|x2+3x+2<0}={x|-2<x<-1},集合N={x|(
1
2
x≤4}={x|x≥-2},
則 M∪N={x|x≥-2},
故選:A
點評:本題主要考查集合的基本運算,求出集合的等價條件是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2-2(x>0)
2x+1(x≤0)
且f(x)=4,則x的值(  )
A、
2
B、
6
C、
3
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,2},B={x|ax-2=0},若B⊆A,則a的值不可能是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i是虛數(shù)單位,則
2i
1+i
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“?x0∈R,2x0≤0”的否定為( 。
A、?x0∈R,2x0≤0
B、?x0∈R,2x0≥0
C、?x0∈R,2x0<0
D、?x0∈R,2x0>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+2sin2x+a的最大值為2.
(Ⅰ)求a的值及f(x)的最小正周期;
(Ⅱ)若x∈[-
π
2
,
π
2
],求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=1,an+1-(n+1)=2(an-1)
(1)是否存在實數(shù)A,B,使得{an+An+B}為等比數(shù)列(其中A,B為常數(shù));
(2)求數(shù)列{nan+(n+1)2}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=asinx+cosx-1的最大值是0.
(1)求證:a=0;
(2)若f(x+
π
4
)=-
1
3
,求sin2x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
、
b
滿足|
a
|=
1
3
,|
b
|=6,
a
b
的夾角為
π
3
,則3|
a
|-2(
a
b
)+4|
b
|=
 

查看答案和解析>>

同步練習冊答案