7.三個數(shù)a,b,c成等差數(shù)列,其和為15,且3b-6a=c,求這三個數(shù).

分析 根據(jù)題意,三個數(shù)成等差數(shù)列,其和為15,得到a+c=2b,求出b的值,再根據(jù)3b-6a=c,求出a,c的值.

解答 解:根據(jù)題意,三個數(shù)成等差數(shù)列,其和為15,
∴a+c=2b,
∴a+b+c=3b=15,
解得b=5,
∴a+c=10,
∵3b-6a=c,
∴6a+c=15,
解得a=1,c=9,
則這三個數(shù)為1,5,9.

點評 本題考查等差數(shù)列的性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥1\\ y≥0\\ x+y≤3\end{array}\right.$,則2x+y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和Sn=3n-2,判斷數(shù)列{an}是否是等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{3x}{2x+1}$,數(shù)列{an}的首項a1=t>0,且an+1=f(an),n∈N*
(1)若t=$\frac{3}{5}$,證明:{$\frac{1}{{a}_{n}}$-1}是等比數(shù)列并求出{an}的通項公式;
(2)若an+1>an對一切n∈N*都成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設x,y為實數(shù),若4x2+2xy+3y2=1,則2x-y的最大值和最小值,并說明取得最值時的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.正項數(shù)列{an}的前n項和為Sn,且4Sn=(an+1)2,bn=(-1)nSn
(1)求{an}通項公式
(2)求和T10=b1+b2+b3+…b10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.數(shù)列{an}滿足:2a1+22a2+23a3+…+2nan=(n+1)2(n∈N*),則數(shù)列{an}的前n項和為 Sn=$\frac{11}{2}$-$\frac{2n+5}{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在直角坐標系xOy中,點P(1,2)到拋物線E:y2=2px(p>0)的焦點的距離為$\sqrt{5}$,過拋物線E的焦點F作兩條相互垂直的直線分別交拋物線于A,B,C,D四點.
(1)求拋物線C的方程;
(2)求四邊形ACBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx-mx(m為常數(shù)),討論函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案