分析 (1)根據(jù)題意,將題中不等式轉(zhuǎn)化成f(1-a)<-f(1-a2),利用f(x)是定義在(-1,1)上的減函數(shù)得到關(guān)于a的不等式,解之即可得到實(shí)數(shù)a的取值范圍.
(2)由題設(shè)條件函數(shù)是一個(gè)定義在[-2,2]上的偶函數(shù)g(x)滿足:當(dāng)x≥0時(shí),g(x)單調(diào)遞減,故可根據(jù)偶函數(shù)的性質(zhì)得出函數(shù)的單調(diào)性,然后由單調(diào)性將不等式轉(zhuǎn)化為一次不等式即可,轉(zhuǎn)化時(shí)要注意定義域的限制,保證轉(zhuǎn)化等價(jià).
解答 解:(1)由f(1-a)+f(1-a2)>0,得f(1-a)>-f(1-a2).
∵f(x)是奇函數(shù),
∴-f(1-a2)=f(a2-1).
于是f(1-a)>f(a2-1).
又由于f(x)在(-1,1)上是減函數(shù),
因此$\left\{\begin{array}{l}{1-a<{a}^{2}-1}\\{-1<1-a<1}\\{-1<{a}^{2}-1<1}\end{array}\right.$
解得1<a<$\sqrt{2}$.
(2):∵定義在[-2,2]上的偶函數(shù)g(x)滿足:當(dāng)x≥0時(shí),g(x)單調(diào)遞減
∴偶函數(shù)g(x)在[-2,0]上是增函數(shù),在[0,2]上是減函數(shù),即自變量的絕對(duì)值越小,函數(shù)值越大
∵g(1-m)<g(m),
∴$\left\{\begin{array}{l}{|1-m|>|m|}\\{-2≤1-m≤2}\\{-2≤m≤2}\end{array}\right.$,解得-1≤m<$\frac{1}{2}$.
故答案為(1,$\sqrt{2}$);[-1,$\frac{1}{2}$).
點(diǎn)評(píng) 本題給出函數(shù)的單調(diào)性,求解關(guān)于a(m)的不等式.著重考查了函數(shù)的奇偶性、單調(diào)性和不等式的解法等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2,4,9} | B. | {2,4,8} | C. | {1,2,8} | D. | {1,2,9} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | -6 | C. | 8 | D. | -8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 43 | B. | 34 | C. | 12 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 13 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com