分析 首先由已知等式求出向量$\overrightarrow{a}$與$\overrightarrow$的數(shù)量積,利用平面向量的數(shù)量積公式可得.
解答 解:由已知||$\overrightarrow{a}$|=|$\overrightarrow$|=1,且($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$$-\overrightarrow$)=-2,
則${\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow-2{\overrightarrow}^{2}=-2$,所以$\overrightarrow{a}•\overrightarrow$=-1,
所以向量$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=-1,
所以向量$\overrightarrow{a}$與$\overrightarrow$的夾角為π.
故答案為:π
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積公式的運(yùn)用;屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,$\frac{1}{4}$) | C. | (-2,$\frac{1}{4}$) | D. | (-∞,-2)∪($\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-∞,\frac{1}{2})$ | B. | (0,1) | C. | $(0,\frac{1}{2})$ | D. | $(\frac{1}{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com