6.設(shè)α為第四象限角,其終邊上的一個(gè)點(diǎn)是P(x,-$\sqrt{5}$),且$cosα=\frac{{\sqrt{2}}}{4}x$,則sinα-$\frac{\sqrt{10}}{4}$.

分析 利用余弦函數(shù)的定義求得x,再利用正弦函數(shù)的定義即可求得sinα的值.

解答 解:∵α為第四象限角,其終邊上一個(gè)點(diǎn)為(x,-$\sqrt{5}$),
則cosα=$\frac{x}{\sqrt{{x}^{2}+5}}$=$\frac{\sqrt{2}}{4}$x(x>0),
∴x2=3,又α為第四象限角,x>0,
∴x=$\sqrt{3}$,
∴sinα=$\frac{-\sqrt{5}}{\sqrt{8}}$=-$\frac{\sqrt{10}}{4}$.
故答案為:-$\frac{\sqrt{10}}{4}$.

點(diǎn)評(píng) 本題考查同角三角函數(shù)間的基本關(guān)系,突出考查了任意角的三角函數(shù)的定義,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列結(jié)論中,正確結(jié)論的個(gè)數(shù)是( 。
(1)若$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c$,且$\overrightarrow a≠\overrightarrow 0$,則$\overrightarrow b=\overrightarrow c$
(2)$|{\overrightarrow a•\overrightarrow b}|=|{\overrightarrow a}||{\overrightarrow b}|?\overrightarrow a∥\overrightarrow b$
(3)$({\overrightarrow a•\overrightarrow b})\overrightarrow c=\overrightarrow a({\overrightarrow b•\overrightarrow c})$
(4)$\overrightarrow{e_1^{\;}}≠\overrightarrow 0,λ∈R,\overrightarrow a=\overrightarrow{e_1^{\;}}+λ\overrightarrow{e_2^{\;}},\overrightarrow b=λ\overrightarrow{e_1^{\;}},\overrightarrow a∥\overrightarrow b$,則$\overrightarrow{e_1^{\;}}∥\overrightarrow{e_2^{\;}}或λ=0$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.關(guān)于合情推理的說法不正確的是(  )
①合情推理是“合乎情理”的推理,因此其猜想的結(jié)論一定是正確的;
②合情推理是由一般到特殊的推理;
③合情推理可以用來對(duì)一些數(shù)學(xué)命題進(jìn)行證明;
④歸納推理是合情推理,因此合情推理就是歸納推理.
A.①④B.②④C.③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖的程序框圖,如輸入的a=2016,b=420,則輸出的a是(  )
A.21B.42C.84D.168

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.

(1)若F為PD的中點(diǎn),求證:AF⊥面PCD;
(2)證明:BD∥面PEC;
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=-x3+ax在(1,+∞)上是單調(diào)函數(shù),則a的取值范圍為(  )
A.a≤0B.a<0C.a≤3D.a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,圓O與直線x+$\sqrt{3}$y+2=0相切于點(diǎn)P,與x正半軸交于點(diǎn)A,與直線y=$\sqrt{3}$x在第一象限的交點(diǎn)為B.點(diǎn)C為圓O上任一點(diǎn),且滿足$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,以x,y為坐標(biāo)的動(dòng)點(diǎn)D(x,y)的軌跡記為曲線Γ.
(1)求圓O的方程及曲線Γ的方程;
(2)若兩條直線l1:y=kx和l2:y=-$\frac{1}{k}$x分別交曲線Γ于點(diǎn)E、F和M、N,求四邊形EMFN面積的最大值,并求此時(shí)的k的值.
(3)已知曲線Γ的軌跡為橢圓,研究曲線Γ的對(duì)稱性,并求橢圓Γ的焦點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若$\overrightarrow{a}$=(x,2),$\overrightarrow$=(-3,6),且$\overrightarrow{a}$與$\overrightarrow$的夾角是銳角,則實(shí)數(shù)x的取值范圍是{x|x<4,且x≠-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|2x+1|-|x-1|.
(Ⅰ)求不等式f(x)<1的解集;
(Ⅱ)若關(guān)于x的不等式f(x)≤a-$\frac{a^2}{2}$+$\frac{5}{2}$有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案