[2013·沈陽(yáng)模擬]已知x,y滿足x+2y-5=0,則(x-1)2+(y-1)2的最小值為( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)一輪配套特訓(xùn):1-3簡(jiǎn)單的邏輯聯(lián)結(jié)詞全稱(chēng)量詞與存在量詞(解析版) 題型:選擇題
下列命題中的假命題是( )
A.?x∈R,lnx=0 B.?x∈R,tanx=
C.?x∈R,x2>0 D.?x∈R,3x>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-9圓錐曲線的綜合問(wèn)題(解析版) 題型:選擇題
[2013·四川高考]拋物線y2=4x的焦點(diǎn)到雙曲線x2-=1的漸近線的距離是( )
A. B. C.1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-5橢圓(解析版) 題型:填空題
[2014·焦作模擬]已知F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),橢圓上存在一點(diǎn)P,使∠F1PF2=60°,則橢圓離心率的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題
[2012·湖北高考]過(guò)點(diǎn)P(1,1)的直線,將圓形區(qū)域{(x,y)|x2+y2≤4}分成兩部分,使得這兩部分的面積之差最大,則該直線的方程為( )
A.x+y-2=0 B.y-1=0
C.x-y=0 D.x+3y-4=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-2直線的交點(diǎn)坐標(biāo)與距離公式(解析版) 題型:選擇題
[2012·浙江高考]設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-7立體幾何中的向量方法(解析版) 題型:填空題
[2014·蘇州模擬]已知正方形ABCD的邊長(zhǎng)為4,CG⊥平面ABCD,CG=2,E,F(xiàn)分別是AB,AD的中點(diǎn),則點(diǎn)C到平面GEF的距離為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:填空題
[2013·鄭州模擬]設(shè)α,β,γ為三個(gè)不同的平面,m,n是兩條不同的直線,在命題“α∩β=m,n?γ,且________,則m∥n”中的橫線處填入下列三組條件中的一組,使該命題為真命題.
①α∥γ,n?β;②m∥γ,n∥β;③n∥β,m?γ.
可以填入的條件有( )
A.①或② B.②或③
C.①或③ D.①或②或③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:6-2一元二次不等式及其解法(解析版) 題型:選擇題
[2014·許昌模擬]若不等式ax2+bx-2<0的解集為{x|-2<x<},則ab=( )
A.-28 B.-26 C.28 D.26
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com