6.設(shè)a為非零常數(shù),已知(x+$\frac{2}{x}$)(1-ax)4的展開(kāi)式中各項(xiàng)系數(shù)和為3,展開(kāi)式中x2項(xiàng)的系數(shù)是-72.

分析 在已知二項(xiàng)式中取x=1,結(jié)合展開(kāi)式中各項(xiàng)系數(shù)和為3求得a值,然后求出(1-2x)4的展開(kāi)式中含x項(xiàng)與含x3的項(xiàng),與(x+$\frac{2}{x}$)中對(duì)應(yīng)的項(xiàng)作積得答案.

解答 解:∵(x+$\frac{2}{x}$)(1-ax)4的展開(kāi)式中各項(xiàng)系數(shù)和為3,
∴(1+2)(1-a)4=3,解得a=2(a≠0).
∴(x+$\frac{2}{x}$)(1-ax)4 =(x+$\frac{2}{x}$)(1-2x)4,
(1-2x)4的展開(kāi)式中所含x項(xiàng)為${C}_{4}^{1}(-2x)=-8x$,含x3的項(xiàng)為${C}_{4}^{3}(-2x)^{3}=-32{x}^{3}$.
∴(x+$\frac{2}{x}$)(1-2x)4的展開(kāi)式中x2項(xiàng)的系數(shù)是1×(-8)+2×(-32)=-72.
故答案為:-72.

點(diǎn)評(píng) 本題考查二項(xiàng)式系數(shù)的性質(zhì),考查了二項(xiàng)展開(kāi)式的通項(xiàng),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=x+x3+x5,x1,x2,x3∈R,x1+x2<0,x2+x3<0,x3+x1<0,則f(x1)+f(x2)+f(x3)的值(  )
A.一定小于0B.一定大于0C.等于0D.正負(fù)都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)D、E為線段AB,AC上的點(diǎn),滿足AD=BD,AE=2CE,且$\overrightarrow{BE}$•$\overrightarrow{CD}$=0,記α為$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角,則下述判斷正確的是( 。
A.cosα的最小值為$\frac{{\sqrt{3}}}{3}$B.cosα的最小值為$\frac{{2\sqrt{5}}}{5}$
C.sin(2α+$\frac{π}{2}$)的最小值為$\frac{1}{2}$D.sin($\frac{π}{2}$-2α)的最小值為$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)a,b,c為△ABC的三邊長(zhǎng),若c2=a2+b2,且$\sqrt{3}$sinA+cosA=$\sqrt{2}$,則∠B的大小為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,角A,B,C所對(duì)的邊為a,b,c.已知2acosB=$\sqrt{3}$(bcosC+ccosB).
(Ⅰ)求B的值;
(Ⅱ)若c=$\sqrt{3}$b,△ABC的面積為2$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an}滿足a1=-1,a2>a1,|$\frac{{a}_{n+1}}{{a}_{n}}$|=2n(n∈N*),若數(shù)列{a2n-1}單調(diào)遞減,數(shù)列{a2n}單調(diào)遞增,則數(shù)列{an}的通項(xiàng)公式為an=(-1)n$•{2}^{\frac{n(n-1)}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c(a<b<c).已知向量$\overrightarrow m$=(a,c),$\overrightarrow n$=(cosC,cosA)滿足$\overrightarrow m$•$\overrightarrow n$=$\frac{1}{2}$(a+c).
(1)求證:a+c=2b;
(2)若2csinA-$\sqrt{3}$a=0,且c-a=8,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知數(shù)列{an}滿足an=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2n-1}$(n∈N*),則an+1-an=$\frac{4n+1}{2n(2n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.對(duì)于任意非零向量$\overrightarrow{a}$=(a1,a2,a3),$\overrightarrow$=(b1,b2,b3),給出下面三個(gè)命題:
(1)$\overrightarrow{a}$∥$\overrightarrow$?$\frac{{a}_{1}}{_{1}}$=$\frac{{a}_{2}}{_{2}}$=$\frac{{a}_{3}}{_{3}}$;
(2)cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{{a}_{1}_{1}+{a}_{2}_{2}+{a}_{3}_{3}}{\sqrt{{a}_{1}^{2}+{a}_{2}^{2}+{a}_{3}^{2}}•\sqrt{_{1}^{2}+_{2}^{2}+_{3}^{2}}}$;
(3)若a1=a2=a3=1,則$\overrightarrow{a}$為單位向量.
其中正確命題的個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案