分析 (1)利用數(shù)量積運(yùn)算性質(zhì)、余弦定理即可證明.
(2)由2csinA-$\sqrt{3}$a=0,利用正弦定理可得2sinCsinA-$\sqrt{3}$sinA=0,化為sinC=$\frac{\sqrt{3}}{2}$,又a<b<c,可得C為鈍角.cosC=$-\frac{1}{2}$,利用余弦定理可得:c2=a2+b2-2abcosC=a2+b2+ab,與c-a=8,2b=a+c聯(lián)立解出即可得出.
解答 證明:(1)∵向量$\overrightarrow m$=(a,c),$\overrightarrow n$=(cosC,cosA)滿足$\overrightarrow m$•$\overrightarrow n$=$\frac{1}{2}$(a+c).
∴acosC+ccosA=$\frac{1}{2}$(a+c),
∴a×$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$+c×$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}(a+c)$,
∴2b=a+c.
解:(2)∵2csinA-$\sqrt{3}$a=0,
∴2sinCsinA-$\sqrt{3}$sinA=0,
∵A∈(0,π),
∴sinA≠0,
∴sinC=$\frac{\sqrt{3}}{2}$,
又a<b<c,
∴C為鈍角.
∴cosC=$-\frac{1}{2}$
∴c2=a2+b2-2abcosC=a2+b2+ab,與c-a=8,2b=a+c.
聯(lián)立解得a=6,b=10,c=14.
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×6×10×\frac{\sqrt{3}}{2}$=15$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了正弦定理余弦定理、數(shù)量積運(yùn)算性質(zhì)、同角三角函數(shù)基本關(guān)系式、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com