已知實(shí)數(shù)x,y滿足
x+y≥2
x-y≤2
0≤y≤3
則z=2x-y的最小值是( 。
A、5
B、
5
2
C、-5
D、-
5
2
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:計(jì)算題,作圖題,不等式的解法及應(yīng)用
分析:由題意作出其平面區(qū)域,將z=2x-y化為y=2x-z,-z相當(dāng)于直線y=2x-z的縱截距,由幾何意義可得.
解答: 解:由題意作出其平面區(qū)域,

將z=2x-y化為y=2x-z,-z相當(dāng)于直線y=2x-z的縱截距,
故當(dāng)過點(diǎn)(-1,3)時(shí),-z有最大值,
此時(shí)z有最小值,
z=2x-y的最小值是-2-3=-5;
故選C.
點(diǎn)評(píng):本題考查了簡(jiǎn)單線性規(guī)劃,作圖要細(xì)致認(rèn)真,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐E-ABCD中,底面ABCD為矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F(xiàn)為CE的中點(diǎn),求證:
(1)AE∥平面BDF;
(2)平面BDF⊥平面BCE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A,B,C,D,E五位學(xué)生的數(shù)學(xué)成績(jī)x與物理成績(jī)y(單位:分)如下表:
學(xué)生ABCDE
數(shù)學(xué)8075706560
物理7066686462
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+
a
;
(參考數(shù)值:80×70+75×66+70×68+65×64+60×62=23190,802+752+652+602=24750)
(2)若學(xué)生F的數(shù)學(xué)成績(jī)?yōu)?0分,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)其物理成績(jī)(結(jié)果保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩艘輪船都要停靠在同一個(gè)泊位,它們可能在一晝夜內(nèi)任意時(shí)刻到達(dá),甲、乙兩船停靠泊位的時(shí)間分別為2小時(shí)與4小時(shí),求一艘船停靠泊位時(shí)必須等待一段時(shí)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x≥1
x-y≤0
x+y-4≤0
,若目標(biāo)函數(shù)z=ax+y取最大值時(shí)最優(yōu)解不唯一,則a的值為(  )
A、-1B、0C、-1或1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx+lnx(k是常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)k=0時(shí),是否存在不相等的正數(shù)a,b滿足
f(a)-f(b)
a-b
=f′(
a+b
2
)?
若存在,求出a,b;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點(diǎn)分別為F1,F(xiàn)2的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)M(2,1),且△MF2F1的面積為
3
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則其表面積為( 。
A、16+2
2
π
B、24+2π
C、5+2
2
π
D、4+2(1+
2
)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{ncos(nπ)}的前n項(xiàng)和為Sn,(n∈N*),則S2015=(  )
A、2014B、2015
C、-1008D、-1007

查看答案和解析>>

同步練習(xí)冊(cè)答案