8.某食品的保鮮時間y(單位:小時)與儲存溫度x(單位:℃)滿足函數(shù)關(guān)系y=ekx+b(e為自然對數(shù)的底數(shù),k、b為實常數(shù)),若該食品在0℃的保鮮時間為120小時,在22℃的保鮮時間是30小時,則該食品在33℃的保鮮時間是15小時.

分析 由已知條件列出方程組,求出e11k=$\frac{1}{2}$,由此能求出結(jié)果.

解答 解:由題意得:$\left\{\begin{array}{l}{120={e}^}\\{30={e}^{22k+b}}\end{array}\right.$,解得e11k=$\frac{1}{2}$,
∴該食品在33℃的保鮮時間是:
y=e33k+b=(e11k3×eb=($\frac{1}{2}$)3×120=15.
故答案為:15.

點評 本題考查保鮮時間的求法,是基礎題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.(1)4a${\;}^{\frac{2}{3}}$b${\;}^{-\frac{1}{3}}$÷(-$\frac{2}{3}$a${\;}^{-\frac{1}{3}}$b${\;}^{-\frac{1}{3}}$)
(2)2a${\;}^{-\frac{1}{3}}$($\frac{1}{2}$a${\;}^{\frac{1}{3}}$-2a${\;}^{-\frac{2}{3}}$)
(3)(2a${\;}^{\frac{1}{2}}$+3b${\;}^{-\frac{1}{4}}$)(2a${\;}^{\frac{1}{2}}$-3b${\;}^{-\frac{1}{4}}$)
(4)(a2-2+a-2)÷(a2-a-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.觀察下列數(shù)列的特點:1,2,2,3,3,3,4,4,4,4,…,其中第20項是( 。
A.5B.6C.7D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設函數(shù)f(x)=ax+b,若f(1)=f′(1)=2,則f(2)=( 。
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)的定義域為(0,+∞),其導函數(shù)為f′(x),對任意正實數(shù)x滿足xf′(x)>f(x),且f(2)=0.且不等式f(x)<0的解集為( 。
A.(0,2)B.(2,+∞)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.${∫}_{0}^{\frac{π}{2}}$(3x-sinx)dx的值為(  )
A.$\frac{{π}^{2}}{4}$+1B.$\frac{{π}^{2}}{4}$-1C.$\frac{3{π}^{2}}{8}$-1D.$\frac{3{π}^{2}}{8}$+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(1)設x,y,z∈(0,+∞),a=x+$\frac{1}{y}$,b=y+$\frac{1}{z}$,c=z+$\frac{1}{x}$,求證:a,b,c三數(shù)中至少有一個不小于2;
(2)已知a,b,c是△ABC的三條邊,求證:$\frac{a+b}{1+a+b}$>$\frac{c}{1+c}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.為了得到函數(shù)y=cos(2x+$\frac{1}{3}$),x∈R的圖象,只需要把y=cos2x曲線上所有的點(  )
A.向左平行移動$\frac{π}{3}$個單位B.向右平行移動$\frac{π}{3}$個單位
C.向左平行移動$\frac{1}{6}$個單位D.向右平行移動$\frac{1}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.如圖,PA是圓O的切線,切點為A,PO交圓O于B、C兩點,$PA=\sqrt{3},PB=1$,則AC=$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案