18.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{1-2i}{2-i}$對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的代數(shù)形式混合運算化簡復(fù)數(shù),求出復(fù)數(shù)對應(yīng)點,即可得到選項.

解答 解:復(fù)數(shù)z=$\frac{1-2i}{2-i}$=$\frac{(1-2i)(2+i)}{(2-i)(2+i)}$=$\frac{4-3i}{5}$,
復(fù)數(shù)對應(yīng)點($\frac{4}{5}$,$-\frac{3}{5}$)在第四象限.
故選:D.

點評 本題考查復(fù)數(shù)的代數(shù)形式混合運算,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某公司要在一條筆直的道路邊安裝路燈,要求燈柱AB與地面垂直,燈桿BC與燈柱AB所在的平面與道路走向垂,路燈C采用錐形燈罩,射出的光線與平面ABC的部分截面如圖中陰影部分所示.已知∠ABC=$\frac{2}{3}$π,∠ACD=$\frac{π}{3}$,路寬AD=24米.設(shè)∠BAC=θ$(\frac{π}{12}≤θ≤\frac{π}{6})$
(1)求燈柱AB的高h(用θ表示);
(2)此公司應(yīng)該如何設(shè)置θ的值才能使制造路燈燈柱AB與燈桿BC所用材料的總長度最?最小值為多少?(結(jié)果精確到0.01米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某次招聘考試中,考生甲在答對第一道題的情況下也答對第二道題的概率為0.8,這兩道題均答對的概率為0.5,則考生甲答對第一道題的概率為( 。
A.$\frac{7}{20}$B.$\frac{1}{20}$C.$\frac{5}{8}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若集合A={-2,-1,0,1,3},集合B={x|x<sin2},則A∩B等于( 。
A.{-2}B.{-2,-1}C.{-2,-1,0}D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某賽季甲、乙兩名籃球運動員每場比賽得分的原始記錄如下:
甲運動員得分:34,21,13,30,29,33,28,27,10
乙運動員得分:49,24,12,31,31,44,36,15,37,25,36
(Ⅰ)根據(jù)兩組數(shù)據(jù)完成甲、乙兩名運動員得分的莖葉圖,并通過莖葉圖比較兩名運動員成績的平均值及穩(wěn)定程度;(不要求計算出具體值,給出結(jié)論即可)
(Ⅱ)若從甲運動員的9次比賽的得分中選2個得分,求兩個得分都超過25分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.己知定義域為[0,1]的函數(shù)f(x)同時滿足:
①?x∈[0,1],恒有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2
(1)求f(0);
(2)求f(x)的最大值;
(3)求證:?x∈[0,1],恒有f(x)≤2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人,為了解學(xué)生本學(xué)期課外閱讀時間,現(xiàn)采用分成抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計了他們課外閱讀時間,然后按“初中學(xué)生”和“高中學(xué)生”分為兩組,再將每組學(xué)生的閱讀時間(單位:小時)分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)寫出a的值;
(2)試估計該校所有學(xué)生中,閱讀時間不小于30個小時的學(xué)生人數(shù);
(3)從閱讀時間不足10個小時的樣本學(xué)生中隨機抽取3人,并用X表示其中初中生的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且an與1的等差中項等于Sn與1的等比中項.
(1)求a1的值及數(shù)列{an}的通項公式;
(2)設(shè)bn=${3}^{1+{a}_{n}}$+(-1)n-1×3n+1t,對于n∈N*有bn+1>bn恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在程序框圖中,輸入N=8,按程序運行后輸出的結(jié)果是( 。
A.6B.7C.10D.12

查看答案和解析>>

同步練習(xí)冊答案