13.下列敘述隨機事件的頻率與概率的關系中哪個是正確的( 。
A.隨著試驗次數(shù)的增加,頻率一般會越來越接近概率
B.頻率是客觀存在的,與試驗次數(shù)無關
C.概率是隨機的,在試驗前不能確定
D.頻率就是概率

分析 因為概率是在大量重復試驗后,事件A發(fā)生的頻率逐漸接近的值,所以就可得到正確答案.

解答 解:事件A的頻率是指事件A發(fā)生的頻數(shù)與n次事件中事件A出現(xiàn)的次數(shù)比,
一般來說,隨機事件A在每次實驗中是否會發(fā)生是不能預料的,但在大量重復試驗后,隨著試驗次數(shù)的增加,事件A發(fā)生的頻率會逐漸穩(wěn)定在區(qū)間[0,1]中的某個常數(shù)上,這個常數(shù)就是事件A的概率.
∴隨著試驗次數(shù)的增加,頻率一般會越來越接近概率.
故選A.

點評 本題主要考查頻率與概率的關系,屬于概念考查題.平時學習過程中,對概念性的知識要熟記

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知正三棱柱(底面是正三角形,側棱與底面垂直)的體積為3$\sqrt{3}$cm3,所有頂點都在球O的球面上,則球O的表面積的最小值為12πcm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.因為|cos<$\overrightarrow a$,$\overrightarrow b$>|≤1,所以|$\overrightarrow a$•$\overrightarrow b$|≤|$\overrightarrow a$||$\overrightarrow b$|,當且僅當$\overrightarrow a,\;\;\overrightarrow b$共線時取等號,那么若$\overrightarrow a$=(x1,y1,z1),$\overrightarrow b$=(x2,y2,z2),則有$\sqrt{{{{(x}_{1}•x}_{2})}^{2}{+{(y}_{1}{•y}_{2})}^{2}{+{(z}_{1}{•z}_{2})}^{2}}$≤$\sqrt{{{x}_{1}}^{2}{{+y}_{1}}^{2}{{+z}_{1}}^{2}}$•$\sqrt{{{x}_{2}}^{2}{{+y}_{2}}^{2}{{+z}_{2}}^{2}}$,當且僅當當$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$取等號,所以當a2+4b2+9c2=6時,$\frac{1}{a^2}$+$\frac{1}{b^2}$+$\frac{1}{c^2}$的最小值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.甲、乙兩人玩數(shù)字游戲,先由甲任想一個數(shù)字記為a,再由乙猜甲剛才想的數(shù)字,把乙想的數(shù)字記為b,且a,b∈{1,2,3,4,5,6},記ξ=|a-b|.
(1)求ξ=1的概率;
(2)若ξ≤1,則稱“甲乙心有靈犀”,求“甲乙心有靈犀”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知正三棱柱ABC-A1B1C1底面邊長為2$\sqrt{3}$,高為3,圓O是等邊三角形ABC的內切圓,點P是圓O上任意一點,則三棱錐P-A1B1C1的外接球的表面積為25π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設數(shù)列{an}的前n項和為Sn,且Sn=2n-1.數(shù)列{bn}滿足b1=2,bn+1-2bn=8an
(1)求數(shù)列{an}的通項公式.
(2)證明:數(shù)列{$\frac{_{n}}{{2}^{n}}$}為等差數(shù)列,并求{bn}的通項公式.
(3)求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.給出下列命題:
①在△ABC中,若A<B,則sinA<sinB;
②在同一坐標系中,函數(shù)y=sinx與y=lgx的交點個數(shù)為2個;
③函數(shù)y=|tan2x|的最小正周期為$\frac{π}{2}$;
④存在實數(shù)x,使2sin(2x-$\frac{π}{6}$)-1=$\frac{3}{2}$成立;
其中正確的命題為①③(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某矩形花壇ABCD長AB=3m,寬AD=2m,現(xiàn)將此花壇在原有基礎上有拓展成三角形區(qū)域,AB、AD分別延長至E、F并使E、C、F三點共線.
(1)要使三角形AEF的面積大于16平方米,則AF的長應在什么范圍內?
(2)當AF的長度是多少時,三角形AEF的面積最小?并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知曲線C:y2+4ax=0,(a≠0),過點(-a,0)的直線L與曲線C交于A,B兩點,則以AB為直徑的圓與直線L:x=a的關系相切.

查看答案和解析>>

同步練習冊答案