16.已知Sn是等差數(shù)列{an}的前n項和,a4=7,S8=64、
(I)求數(shù)列{an}的通項公式
(II)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前100項的和.

分析 (1)利用等差數(shù)列的通項公式及其求和公式即可得出.
(2)利用“裂項求和”方法即可得出.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
則$\left\{\begin{array}{l}{a_4}=7\\{S_8}=64\end{array}\right.⇒\left\{\begin{array}{l}{a_1}+3d=7\\ 8{a_1}+28d=64\end{array}\right.$,
解得a1=1,d=2,
an=1+(n-1)•2=2n-1.
(2)設(shè)數(shù)列{bn}的前n項的和為Tn
${b_n}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴${T_{100}}=\frac{1}{2}[{(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{199}-\frac{1}{201})}]$=$\frac{1}{2}(1-\frac{1}{201})=\frac{100}{201}$.

點評 本題考查了等差數(shù)列的通項公式及其求和公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$在正方形網(wǎng)格中的位置圖所示.
(1)求作向量$\overrightarrow{m}$,$\overrightarrow{n}$,其中$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{n}$=$\overrightarrow{a}$-$\overrightarrow{c}$;
(2)求向量$\overrightarrow{m}$,$\overrightarrow{n}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若拋物線y2=2px(p>0)的準(zhǔn)線經(jīng)過點(-1,1),則拋物線焦點坐標(biāo)為(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.從某次知識競賽中隨機(jī)抽取100名考生的成績,繪制成如圖所示的頻率分布直方圖,分?jǐn)?shù)落在區(qū)間[55,65),[65,75),[75,85)內(nèi)的頻率之比為4:2:1.
(Ⅰ)求這些分?jǐn)?shù)落在區(qū)間[55,65]內(nèi)的頻率;
(Ⅱ)用分層抽樣的方法在區(qū)間[45,75)內(nèi)抽取一個容量為6的樣本,將該樣本看成一個總體,從中任意抽取2個分?jǐn)?shù),求這2個分?jǐn)?shù)都在區(qū)間[55,75]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=x3+ax2+(a+6)x+1在R上存在極值,則實數(shù)a的取值范圍( 。
A.-3≤a≤6B.a≥6或a≤-3C.-3<a<6D.a>6或a<-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若不等式4x-logax<0對任意x∈(0,$\frac{1}{4}$)恒成立,則實數(shù)a的取值范圍為[$\frac{1}{4}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,三棱柱ADE-BCG中,四邊形ABCD是矩形,F(xiàn)是EG的中點,EA⊥AB,AD=AE=EF=1,平面ABGE⊥平面ABCD.
(1)求證:AF⊥平面FBC;
(2)求二面角B-FC-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=-x2+alnx(a∈R).
(Ⅰ)當(dāng)a=2時,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)g(x)=f(x)-2x+2x2,討論函數(shù)g(x)的單調(diào)性;
(Ⅲ)若(Ⅱ)中函數(shù)g(x)有兩個極值點x1,x2(x1<x2),且不等式g(x1)≥mx2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,在△ABC中,AB=AC,以AB為直徑的圓O與邊BC,AC分別交于點D,E,且DF⊥AC于F.若CD=3,EA=$\frac{7}{5}$,則EF的長為$\frac{9}{5}$.

查看答案和解析>>

同步練習(xí)冊答案