【題目】已知等差數(shù)列的公差d>0,則下列四個命題:
①數(shù)列是遞增數(shù)列; ②數(shù)列是遞增數(shù)列;
③數(shù)列是遞增數(shù)列; ④數(shù)列是遞增數(shù)列.
其中正確命題的個數(shù)為( )
A.1B.2C.3D.4
【答案】B
【解析】
根據(jù)等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式,結(jié)合數(shù)列的通項(xiàng)公式的函數(shù)性質(zhì)進(jìn)行求解即可.
①:因?yàn)閿?shù)列是等差數(shù)列,
所以,
因此可以把看成關(guān)于的一次函數(shù),
而,所以數(shù)列是遞增數(shù)列,因此本命題是真命題;
②:因?yàn)閿?shù)列是等差數(shù)列,
所以,
因此可以把看成關(guān)于的二次函數(shù),而二次函數(shù)的單調(diào)性與開口和對稱軸有關(guān),
雖然能確定開口方向,但是不能確定對稱軸的位置,故不能判斷數(shù)列的單調(diào)性,故本命題是假命題;
③:因?yàn)閿?shù)列是等差數(shù)列,
所以,
設(shè),因此數(shù)列的通項(xiàng)公式為:,
顯然當(dāng)時,數(shù)列是常數(shù)列,故本命題是假命題;
④:因?yàn)閿?shù)列是等差數(shù)列,
所以,
設(shè),因此數(shù)列的通項(xiàng)公式為,
所以可以把看成關(guān)于的一次函數(shù),
而,所以數(shù)列是遞增數(shù)列,因此本命題是真命題.
故選:B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目.若一個學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了解高一年級420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 | |||||||||
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 | |||||||||
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | ||||||||||
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 | |||||||||
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 求的分布列及數(shù)學(xué)期望. |
年份(年) | 5 | 6 | 7 | 8 |
投資金額(萬元) | 15 | 17 | 21 | 27 |
(1)利用所給數(shù)據(jù),求出投資金額與年份之間的回歸直線方程;
(2)預(yù)測該社區(qū)在2019年在“文化丹青”上的投資金額.
(附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為, .)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com