17.如圖,在△ABC中,∠BAC=120°,AD⊥AB,|BC|=$\sqrt{3}$|BD|,|AD|=1,則|AC|=2.

分析 過(guò)C作CE⊥AD交AD延長(zhǎng)線于E,利用相似三角形得出DE,即可求出AE,從而得出AC.

解答 解:過(guò)C作CE⊥AD交AD延長(zhǎng)線于E.
則△ABD∽△ECD.
∴$\frac{DE}{AD}=\frac{CD}{BD}$=$\sqrt{3}-1$.
∴DE=$\sqrt{3}-1$,∴AE=AD+DE=$\sqrt{3}$.
∵∠CAE=∠BAC-∠BAD=30°,
∴AC=$\frac{AE}{cos30°}$=2.
故答案為:2.

點(diǎn)評(píng) 本題考查了解三角形的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知x>1,則x-1+$\frac{1}{x-1}$的最小值為2,此時(shí)x的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.過(guò)拋物線C:y2=4x的焦點(diǎn)F作直線l交拋物線C于A、B兩點(diǎn),若A到拋物線的準(zhǔn)線的距離為4,則弦長(zhǎng)|AB|的值為( 。
A.8B.$\frac{16}{3}$C.$\frac{13}{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若函數(shù)$y=2sin(ωx+φ)(ω>0,0<φ<\frac{π}{2})$的圖象過(guò)點(diǎn)(0,1),且向右平移$\frac{π}{6}$個(gè)單位(保持縱坐標(biāo)不變)后與平移前的函數(shù)圖象重合,則φ=$\frac{π}{6}$,ω的最小值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.分別求下列函數(shù)的導(dǎo)數(shù):
(1)y=ex•cos x;
(2)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$)
(3)y=ln$\sqrt{1+{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在一次數(shù)學(xué)測(cè)驗(yàn)后,數(shù)學(xué)老師將某班全體學(xué)生(50人)的數(shù)學(xué)成績(jī)進(jìn)行初步統(tǒng)計(jì)后交給其班主任(如表).
分?jǐn)?shù)50~6060~7070~8080~9090~100
人數(shù)26102012
請(qǐng)你幫助這位班主任完成下面的統(tǒng)計(jì)分析工作:
(1)列出頻率分布表;
(2)畫(huà)出頻率分布直方圖及頻率分布折線圖;
(3)從頻率分布直方圖估計(jì)出該班同學(xué)成績(jī)的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.用更相減損術(shù)求459和357的最大公約數(shù),需要減法的次數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.計(jì)算  i(2-i)值 為1+2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.(1)類比平面內(nèi)直角三角形ABC的勾股定理,試給出空間中四面體P-DEF性質(zhì)的猜想;
(2)證明第(1)問(wèn)中得到的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案