已知兩個(gè)圓的圓心都在直線x-y+1=0上且相交于兩個(gè)不同的點(diǎn),若其中一個(gè)交點(diǎn)的坐標(biāo)為A(-2,2),則另一個(gè)交點(diǎn)的坐標(biāo)是
 
考點(diǎn):與直線關(guān)于點(diǎn)、直線對(duì)稱的直線方程
專題:直線與圓
分析:由題意可得另一個(gè)交點(diǎn)B是點(diǎn)A(-2,2)關(guān)于直線x-y+1=0的對(duì)稱點(diǎn),設(shè)點(diǎn)B(m,n),則利用垂直、和中點(diǎn)在對(duì)稱軸上這兩個(gè)條件求出m、n的值,可得結(jié)論.
解答: 解:由題意可得另一個(gè)交點(diǎn)B是點(diǎn)A(-2,2)關(guān)于直線x-y+1=0的對(duì)稱點(diǎn),
設(shè)點(diǎn)B(m,n),則由
n-2
m+2
•1=-1
m-2
2
-
n+2
2
+1=0
,求得
m=1
n=-1
,故點(diǎn)B的坐標(biāo)為(1,-1),
故答案為:(1,-1).
點(diǎn)評(píng):本題主要考查直線和圓相交的性質(zhì),求一個(gè)點(diǎn)關(guān)于某直線的對(duì)稱點(diǎn)的坐標(biāo)的方法,利用了垂直、和中點(diǎn)在對(duì)稱軸上這兩個(gè)條件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“若x=0,則x2+x=0”以及它的逆命題、否命題、逆否命題中,真命題有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程是
x=
2
2
t
y=
2
2
t+4
2
(t是參數(shù)),⊙C的極坐標(biāo)方程為ρ=2cos(θ+
π
4
)

(Ⅰ)求圓心C的直角坐標(biāo);
(Ⅱ)試判斷直線l與⊙C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)算法,其流程圖如圖所示,則輸出結(jié)果是(  )
A、9B、27C、81D、243

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x,數(shù)列{an}滿足an=f(n+1)(n∈N+
(Ⅰ)求數(shù)列{
1
anan+1
}的前n項(xiàng)和Sn;
(Ⅱ)關(guān)于x的不等式mx2-1≥f(x)(x<0)能成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,S5=15,則數(shù)列{
1
anan+1
}的前10項(xiàng)和為( 。
A、
10
11
B、
9
11
C、
9
10
D、
11
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sinA=
1
5
,sinB=
1
10
,則其最長(zhǎng)邊與最短邊的比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosx+
3
cos2x-
3
2

(1)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)如果△ABC的角A,B,C所對(duì)的邊為a,b,c,且滿足b2=ac,試求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條件
y≥0
x≥-2
x+y≥1
,則z=(x+3)2+y2的最小值為( 。
A、8B、10C、12D、16

查看答案和解析>>

同步練習(xí)冊(cè)答案