(12分)已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,
,N為AB上一點且滿足
,M,S分別為PB,BC的中點
(1)證明:CM⊥SN;
(2)求SN與平面CMN所成角的大。
(3)求三棱錐P-ABC外接球的體積V。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(12分)如圖,在三棱錐
中,
平面
,
,
、
、
分別為棱
、
、
的中點,
,
(1)求證:
;
(2)求直線
與平面
所成角正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
給出下列命題:(1)三點確定一個平面;(2)在空間中,過直線外一點只能作一條直線與該直線平行;(3)若平面
上有不共線的三點到平面
的距離相等,則
;(4)若直線
滿足
則
.其中正確命題的個數(shù)是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,已知三棱錐P=ABC中,PA⊥PC,D為AB的中點,M為PB的中點,且AB=2PD.
(1)求證:DM//面PAC;
(2)找出三棱錐P—ABC中一組面與面垂直的位置關(guān)系,并給出證明(只需找到一組即可).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)在平行六面體
中,
是
的中點,
.
(1)化簡:
;
(2) 設(shè)
,
,
,若
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)如圖,直三棱柱ABC—A
1B
1C
1中,∠BAC=90°,AB=BB
1=1,直線B
1C與平面ABC成30°角,求二面角B-B
1C-A的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)如圖7-4,已知△ABC中, ∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD繞CD旋轉(zhuǎn)至A′CD,使點A′與點B之間的距離A′B=
。
(1)求證:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大小;
(3)求異面直線A′C與BD所成的角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題12分)已知空間四邊形ABCD中,AC=AD,BC=BD,且E是CD的中點,F(xiàn)是BD的中點, (1)求證:BC∥平面AFE (2)平面ABE⊥平面ACD
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
本小題滿分12分)
如圖,正方形ABCD、ABEF的邊長都是1,而且平面ABCD、ABEF互相垂直,點M在AC上移動,點N在BF上移動,若CM=BN=a(0<a<).
(1)求MN的長;
(2)當(dāng)a為何值時,MN的長最小;
(3)當(dāng)MN的長最小時,求面MNA與面MNB所成的二面角的余弦值.
查看答案和解析>>