考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知得a2=5,d>0,(7-d)(18+d)=100,由此能求出bn=5•2n-1,an=2n+1.
(Ⅱ)確定數(shù)列{cn}的通項(xiàng),利用裂項(xiàng)法求前n項(xiàng)和Sn.
解答:
解:(Ⅰ)∵正項(xiàng)等差數(shù)列{a
n}中,a
1+a
2+a
3=15,
∴a
2=5,d>0,
∵a
1+2,a
2+5,a
3+13構(gòu)成等比數(shù)列{b
n}的前三項(xiàng),
∴{b
n}的前3項(xiàng)分別為7-d,10,18+d,
依題意,有(7-d)(18+d)=100,
解得d=2或d=-13(舍),
∴{b
n}的首項(xiàng)b
1=5,公比q=2,
∴b
n=5•2
n-1,a
n=2n+1.
(Ⅱ)c
n=
=
(
-
),
∴S
n=
(1-
+
-
+…+
-
)=
(1-
)=
.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,考查裂項(xiàng)法,確定數(shù)列的通項(xiàng)是關(guān)鍵.