15.已知拋物線方程為$y=\frac{1}{4}{x^2}$,則該拋物線的焦點坐標為( 。
A.(0,-1)B.$({-\frac{1}{16},0})$C.$({\frac{1}{16},0})$D.(0,1)

分析 把拋物線方程化成標準方程,根據(jù)拋物線的焦點坐標公式得出焦點坐標.

解答 解:把拋物線方程化為標準方程為:x2=4y,
∴拋物線的焦點在y軸的正半軸,p=2,$\frac{p}{2}=1$.
∴拋物線的焦點坐標為(0,1).
故選:D.

點評 本題考查了拋物線的簡單性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{e}^{x}-a}{x-1}$,函數(shù)f(x)的圖象在點(2,f(2))處的切線與直線y=-$\frac{1}{e}$x+e垂直,其中實數(shù)a是常數(shù),e是自然對數(shù)的底數(shù).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若關(guān)于x的不等式f(ex+1)≤t有解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是( 。
A.$y=\sqrt{x}$B.y=ln|x|C.y=exD.y=cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若函數(shù)f(x)=|2016x-2|-b有兩個零點,則實數(shù)b的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓C的左、右焦點分別為$(-\sqrt{3},0)$、$(\sqrt{3},0)$,且經(jīng)過點$(1,\frac{{\sqrt{3}}}{2})$.
(1)求橢圓C的方程:
(2)直線y=kx(k∈R,k≠0)與橢圓C相交于A,B兩點,D點為橢圓C上的動點,且|AD|=|BD|,請問△ABD的面積是否存在最小值?若存在,求出此時直線AB的方程:若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積是( 。
A.$\frac{23}{3}$cm3B.$\frac{22}{3}$cm3C.$\frac{47}{6}$cm3D.7cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知$\underset{lim}{n→∞}$($\frac{3{n}^{2}+cn+1}{a{n}^{2}+bn}$-4n)=5,求常數(shù)a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.為使政府部門與群眾的溝通日;,某城市社區(qū)組織“網(wǎng)絡(luò)在線問政”獲動,2015年,該社區(qū)每月通過問卷形式進行一次網(wǎng)上問政;2016年初,社區(qū)隨機抽取了60名居民,對居民上網(wǎng)參政意愿進行調(diào)查,已知上網(wǎng)參與問政次數(shù)與參與人數(shù)的頻率分布如表:
參與調(diào)查問卷次數(shù)[0,2)[2,4)[4,6)[6,8)[8,10)[10,12]
參與調(diào)查問卷人數(shù)814814106
附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{21}{n}_{12})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$;
 P(x2>k) 0.100 0.050 0.010
 k 2.706 3,8416.635
(1)若將參與調(diào)查的問卷不低于4次的居民稱為“積極上網(wǎng)參政居民”,請您根據(jù)頻數(shù)分布表,完成2×2列聯(lián)表,據(jù)此調(diào)查你是否有99%的把握認為在此社區(qū)內(nèi)“上網(wǎng)參政議政與性別有關(guān)?”
合計
積極上網(wǎng)參政居民8
不積極上網(wǎng)參政居民
合計40
(2)從被調(diào)查的人中按男女比例隨機選取6人,再從選取的6人中選出3人參加政府聽證會,求選出的3人為2男1女的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖所示的程序框圖的算法思路源于我國古代數(shù)字著作《數(shù)書九章》,稱為“秦九韶算法”.執(zhí)行該程序框圖,若輸入x=2,n=5,則輸出的v=( 。
A.26B.48C.57D.64

查看答案和解析>>

同步練習冊答案