9.直線$\sqrt{3}$x+y+$\sqrt{3}$-1=0截圓x2+y2-2x-2y-2=0所得的劣弧所對的圓心角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

分析 利用圓心到直線的距離還有半徑構(gòu)成的直角三角形來求劣弧所對圓心角的一半.

解答 解:(x-1)2+(y-1)2=4,圓心到直線的距離d=$\frac{|\sqrt{3}+1+\sqrt{3}-1|}{\sqrt{1+(\sqrt{3})^{2}}}=\sqrt{3}$,
cosα=$\fracktue2tv{r}$=$\frac{\sqrt{3}}{2}$,$α=\frac{π}{6}$,則劣弧所對的圓心角2α=$\frac{π}{3}$.
故選:B.

點(diǎn)評 本題考查了圓心距、半徑和弦的一半構(gòu)成的直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知$\frac{sin(A-B)}{sin(A+B)}$=$\frac{b+c}{c}$.
(1)求角A的大小;
(2)當(dāng)a=6時,求△ABC面積的最大值,并指出面積最大時△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=x3+18x+17sinx,若對任意的θ∈R,不等式f(asinθ+2)+f(1+2cos2θ)≥0恒成立,則a的取值范圍是-1≤a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知向量$\overrightarrow{m}$=(sin A,cos A),$\overrightarrow{n}$=(1,-$\sqrt{3}$),$\overrightarrow{m}$⊥$\overrightarrow{n}$,且A為銳角.
(1)求角A的大;
(2)求函數(shù)f(x)=$\sqrt{3}$(cos2x-sin2x)+4cos Asin xcos x(x∈[0,$\frac{π}{2}$])的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.定義在R上的偶函數(shù)滿足f($\frac{3}{2}$+x)=f($\frac{3}{2}$-x),且f(-1)=1,f(0)=-2,則f(1)+f(2)+f(3)+…+f(2016)的值為( 。
A.2B.1C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an}的前n項和為Sn,若數(shù)列{Sn}有唯一的最大項S3,Hn=S1+2S2+3S3+…+nSn,則(  )
A.S5•S6<0B.H5•H6<0
C.數(shù)列{an}、{Sn}都是單調(diào)遞減數(shù)列D.H6可能是數(shù)列{Hn}最大項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,已知sin(C+$\frac{π}{6}$)=$\frac{2a}$,則角A的值是$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知命題p:函數(shù)f(x)=2ax2-x-1(a≠0)在(0,1)內(nèi)恰有一個零點(diǎn);命題q:函數(shù)y=x2-a在(0,+∞)上是減函數(shù),若p或q為真命題,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,2]B.(1,2)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將一枚均勻硬幣隨機(jī)投擲4次,恰好出現(xiàn)2次正面向上的概率為( 。
A.$\frac{1}{4}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

同步練習(xí)冊答案