分析 通過求導(dǎo)數(shù)便可判斷f(x)在R上單調(diào)遞增,并且容易判斷為奇函數(shù),利用換元法并且借助于恒成立問題的解決方法得到答案.
解答 易知函數(shù)f(x)=x3+18x+17sinx為奇函數(shù)
∵f′(x)=3x2+18+17cosx>0
∴f(x)單調(diào)遞增.
∵f(asinθ+2)+f(1+2cos2θ)≥0恒成立
∴f(asinθ+2))≥-f(1+2cos2θ)
f(asinθ+2)≥f(-1-2cos2θ)
asinθ+2≥-1-2cos2θ恒成立
即 4sin2θ-asinθ-5≤0,
設(shè)t=sinθ,t∈[-1,1];g(t)=4t2-at-5≤0,
g(-1)≤0且g(1)≤0
故答案為:-1≤a≤1
點評 本題考查函數(shù)單調(diào)性與奇偶性的綜合,考查恒成立問題,考查分類討論的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,2) | C. | (2,+∞) | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 0 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com