【題目】讀書可以使人保持思想活力,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然正氣書籍是文化的重要載體,讀書是承繼文化的重要方式某地區(qū)為了解學(xué)生課余時間的讀書情況,隨機抽取了名學(xué)生進行調(diào)查,根據(jù)調(diào)查得到的學(xué)生日均課余讀書時間繪制成如圖所示的頻率分布直方圖,將日均課余讀書時間不低于分鐘的學(xué)生稱為讀書之星,日均課余讀書時間低于分鐘的學(xué)生稱為非讀書之星”:已知抽取的樣本中日均課余讀書時間低于分鐘的有

(1)的值;

(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷是否有以上的把握認為讀書之星與性別有關(guān)?

非讀書之星

讀書之星

總計

總計

(3)將上述調(diào)查所得到的頻率視為概率,現(xiàn)從該地區(qū)大量學(xué)生中,隨機抽取名學(xué)生,每次抽取名,已知每個人是否被抽到互不影響,記被抽取的讀書之星人數(shù)為隨機變量,求的分布列和期望

附:,其中.

【答案】1,n=100,2)表見解析,沒有以上的把握認為讀書之星與性別有關(guān)(3)分布列見解析,

【解析】

1)首先根據(jù)頻率和為1,再根據(jù)頻率,頻數(shù)和樣本容量的關(guān)系求;

2)首先計算“讀書之星”的人數(shù),然后再依次填寫列聯(lián)表;并根據(jù)公式計算比較大小,做出判斷;

3)從該地區(qū)學(xué)生中抽取一名學(xué)生是讀書之星的概率為,由題意可知

并求分布列和數(shù)學(xué)期望.

1

解得:,

所以.

(2)因為,所以讀書之星

從而列聯(lián)表如下圖所示:

非讀書之星

讀書之星

總計

總計

列聯(lián)表中的數(shù)據(jù)代入公式計算得

因為,所以沒有以上的把握認為讀書之星與性別有關(guān)

(3)將頻率視為概率,即從該地區(qū)學(xué)生中抽取一名學(xué)生是讀書之星的概率為.

由題意可知

所以

所以的分布列為

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

1)試討論函數(shù)的單調(diào)性;

2)若,試證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在正常數(shù),使得對任意的,都有成立,我們稱函數(shù)同比不減函數(shù)

1)求證:對任意正常數(shù)都不是同比不減函數(shù);

2)若函數(shù)同比不減函數(shù),求的取值范圍;

3)是否存在正常數(shù),使得函數(shù)同比不減函數(shù),若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,bc,且2acosB2cb

1)求∠A的大小;

2)若△ABC的外接圓的半徑為,面積為,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵職員工作熱情,某公司對每位職員一年來的工作業(yè)績按月進行考評打分;年終按照職員的月平均值評選公司最佳職員并給予相應(yīng)獎勵.已知職員一年來的工作業(yè)績分數(shù)的莖葉圖如圖所示:

1)根據(jù)職員的業(yè)績莖葉圖求出他這一年的工作業(yè)績的中位數(shù)和平均數(shù);

2)由于職員的業(yè)績高,被公司評為年度最佳職員,在公司年會上通過抽獎形式領(lǐng)取獎金.公司準備了六張卡片,其中一張卡片上標注獎金為6千元,兩張卡片的獎金為4千元,另外三張的獎金為2千元.規(guī)則是:獲獎職員需要從六張卡片中隨機抽出兩張,這兩張卡片上的金額數(shù)之和作為獎金數(shù).求職員獲得獎金6千元的概率;并說明獲得獎金6千元和8千元哪個可能性較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x22xsinα+1的頂點在橢圓x2+my2=1上,這樣的拋物線有且只有兩條,則m的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{bn}的前n項和為Tn,且T4=4b5=6.

1)求數(shù)列{bn}的通項公式;

2)若正整數(shù)n1,n2,,nt滿足5n1n2nt,b3,b5,,,,成等比數(shù)列,求數(shù)列{nt}的通項公式(t是正整數(shù));

3)給出命題:在公比不等于1的等比數(shù)列{an}中,前n項和為Sn,若am,am+2am+1成等差數(shù)列,則Sm,Sm+2,Sm+1也成等差數(shù)列.試判斷此命題的真假,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著金融市場的發(fā)展,越來越多人選擇投資黃金作為理財?shù)氖侄,下面?/span>A市把黃金作為理財產(chǎn)品的投資人的年齡情況統(tǒng)計如下圖所示.

1)求把黃金作為理財產(chǎn)品的投資者的年齡的中位數(shù);(結(jié)果用小數(shù)表示,小數(shù)點后保留兩位有效數(shù)字)

2)現(xiàn)按照分層抽樣的方法從年齡在的投資者中隨機抽取5人,再從這5人中隨機抽取3人進行投資調(diào)查,求恰有1人年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,墻上有一壁畫,最高點離地面4米,最低點離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設(shè)觀賞視角

(1)若問:觀察者離墻多遠時,視角最大?

(2)若變化時,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案