A. | $\frac{1}{6}$ | B. | $\frac{9}{2}$ | C. | $\frac{8}{3}$ | D. | $\frac{2}{3}$ |
分析 先求出曲線x=y2 和直線y=x-2的交點坐標,從而得到積分的上下限,然后利用定積分表示出圖形面積,最后根據(jù)定積分的定義求出即可.
解答 解:聯(lián)立直線y=x-2與曲線y2=x,解得交點坐標A(1,-1),B(4,2)
∴直線y=x-2與曲線y2=x所圍成的封閉圖形的面積為
2${∫}_{0}^{1}\sqrt{x}dx$+${∫}_{1}^{4}(\sqrt{x}-x+2)dx$=2×$\frac{2}{3}$×${x}^{\frac{3}{2}}{|}_{0}^{1}$+($\frac{2}{3}{x}^{\frac{3}{2}}-\frac{1}{2}{x}^{2}+2x$)${|}_{1}^{4}$=$\frac{9}{2}$,
故選:B.
點評 本題主要考查了定積分在求面積中的應用,以及會利用定積分求圖形面積的能力.應用定積分求平面圖形面積時,積分變量的選取是至關重要的,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=11 | C. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1 | D. | $\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{17}{6}$ | C. | $\frac{8}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 34 | B. | 32 | C. | 20 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{9}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com