【題目】(1)在圓內(nèi)直徑所對的圓周角是直角.此定理在橢圓內(nèi)(以焦點在軸上的標(biāo)準(zhǔn)形式為例)可表述為“過橢圓的中心的直線交橢圓于兩點,點是橢圓上異于的任意一點,當(dāng)直線,斜率存在時,它們之積為定值.”試求此定值;
(2)在圓內(nèi)垂直于弦的直徑平分弦.類比(1)將此定理推廣至橢圓,不要求證明.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè):實數(shù)滿足,其中;:實數(shù)滿足.
(1)若,且為真,為假,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABCA1B1C1中,AB AC,點E,F分別在棱BB1,CC1上(均異于端點),且∠ABE∠ACF,AE⊥BB1,AF⊥CC1.
求證:(1)平面AEF⊥平面BB1C1C;
(2)BC //平面AEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
若在上是單調(diào)函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為,當(dāng)時,,且對任意的實數(shù),,恒成立,若數(shù)列滿足()且,則下列結(jié)論成立的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,B為AC的中點,分別以AB,AC為直徑在AC的同側(cè)作半圓,M,N分別為兩半圓上的動點不含端點A,B,,且,則的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如表:
(1)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點向左平移θ(θ>0)個單位長度,得到y=g(x)的圖象.若y=g(x)圖象的一個對稱中心為(,0),求θ的最小值.
(3)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,由于高速公路繼續(xù)實行小型車免費,因此高速公路上車輛較多,某調(diào)查公司在某城市從七座以下小型汽車中按進(jìn)入服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如圖的頻率分布直方圖.
(Ⅰ)此調(diào)查公司在采樣中,用到的是什么抽樣方法?
(Ⅱ)求這40輛小型車輛車速的眾數(shù)、中位數(shù)以及平均數(shù)的估計值;
(Ⅲ)若從車速在[60,70)的車輛中任抽取2輛,求至少有一輛車的車速在[65,70)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)解關(guān)于x的不等式x2-2mx+m+1>0;
(2)解關(guān)于x的不等式ax2-(2a+1)x+2<0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com