15.計(jì)算下列各式的值:
(1)$\frac{1}{\sqrt{2}-1}$-($\frac{3}{5}$)0+($\frac{9}{4}$)-0.5+$\root{4}{(\sqrt{2}-e)^{4}}$;
(2)lg500+lg$\frac{8}{5}$-$\frac{1}{2}$lg64+50(lg2+lg5)2

分析 (1)直接利用有理指數(shù)冪的運(yùn)算法則化簡求解即可.
(2)利用對數(shù)運(yùn)算法則化簡求解即可.

解答 解:(1)$\frac{1}{\sqrt{2}-1}$-($\frac{3}{5}$)0+($\frac{9}{4}$)-0.5+$\root{4}{(\sqrt{2}-e)^{4}}$=$\sqrt{2}$+1-1+$\frac{2}{3}$+e-$\sqrt{2}$=$\frac{2}{3}$+e.
(2)lg500+lg$\frac{8}{5}$-$\frac{1}{2}$lg64+50(lg2+lg5)2=lg5+2+3lg2-lg5-3lg2+50(lg10)2
=lg5+2+3lg2-lg5-3lg2+50=52.

點(diǎn)評 本題考查對數(shù)運(yùn)算法則的應(yīng)用,有理指數(shù)冪的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“a>1”是“函數(shù)f(x)=x2-2ax在x∈(-∞,1)為減函數(shù)”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
(1)若m=4,求A∪B;
(2)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知正四棱錐V-ABCD中,AC與BD交于點(diǎn)M,VM是棱錐的高,若AC=6cm,VC=5cm.
(1)求正四棱錐V-ABCD的體積;
(2)求直線VD與底面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=log${\;}_{\frac{1}{2}}$(3x-2)的定義域是{x|x>$\frac{2}{3}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|x≥1},B={x|x>2a+1},若A∩(∁RB)=∅,則實(shí)數(shù)a的取值范圍是(  )
A.(1,+∞)B.(0,+∞)C.(-∞,1)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線x-y+a=0與圓心為C的圓x2+y2+2x-4y-4=0相交于A,B兩點(diǎn),且AC⊥BC,則實(shí)數(shù)a的值為( 。
A.0或3B.0或4C.0或5D.0或6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\vec a$,$\vec b$是兩個(gè)向量,$|{\vec a}|=1$,$|{\vec b}|=2$,且$({\vec a+\vec b})⊥\vec a$,則$\vec a$,$\vec b$的夾角為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在長方體ABCD-A1B1C1D1中,面BMD1N與棱CC1,AA1分別交于點(diǎn)M,N,且M,N均為中點(diǎn).
(1)求證:AC∥面BMD1N;
(2)若$AD=CD=2,D{D_1}=2\sqrt{2},O$為AC的中點(diǎn).BD1上是否存在動(dòng)點(diǎn)F,使得OF⊥面BMD1N?若存在,求出點(diǎn)F的位置,并加以證明;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案