16.用五點作圖法作出函數(shù)$y=cos({x+\frac{π}{6}}),x∈[{-\frac{π}{6},\frac{11π}{6}}]$的圖象.

分析 根據(jù)“五點法”作圖的步驟,描出五點后,用平滑曲線連接后,即可得到函數(shù)$y=cos({x+\frac{π}{6}}),x∈[{-\frac{π}{6},\frac{11π}{6}}]$的簡圖.

解答 解:

$x+\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$
x$-\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$$\frac{4π}{3}$$\frac{11π}{6}$
y10-101
--------------(5分)   
-----(10分)

點評 本題考查的知識點是五點法作函數(shù)y=Asin(ωx+φ)的圖象,其中描出五個關(guān)鍵點的坐標(biāo)是解答本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線f(x)=ax3+bx2在x=1處的切線為y=3x-1,求:
(1)求f(x)的解析式;
(2)求過原點的f(x)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{ax+b}{1+{x}^{2}}$是定義在[-1,1]上的奇函數(shù),且f($\frac{1}{3}$)=$\frac{3}{10}$.
(1)求f(x)的解析式;
(2)判斷f(x)在[-1,1]上的單調(diào)性并證明;
(3)當(dāng)存在x∈[$\frac{1}{2}$,1]使得不等式f(mx-x)+f(x2-1)>0恒成立,請同學(xué)們探究實數(shù)m的所有可能取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線${x^2}-\frac{y^2}{2}=1$的焦點為F1,F(xiàn)2,則焦距|F1F2|=( 。
A.1B.2C.$2\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列關(guān)系中正確的是( 。
A.sin15°<sin163°<cos74°B.sin15°<cos74°<sin163°
C.sin163°<sin15°<cos74°D.cos74°<sin163°<sin15°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.y=tanx的導(dǎo)數(shù)是( 。
A.$\frac{1}{{{{cos}^2}x}}$B.$-\frac{1}{{{{cos}^2}x}}$C.$\frac{cos2x}{{{{cos}^2}x}}$D.$-\frac{cos2x}{{{{cos}^2}x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若x>0,y>0,且$\frac{2}{x}$+$\frac{8}{y}$=1,求xy及x+y的最小值,何時取到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題錯誤的是( 。
A.命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0無實數(shù)根,則m≤0”.
B.對于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0.
C.若p∧q為假命題,則p,q中至少一個為假命題.
D.“$θ=2kπ+\frac{π}{6}$”是“$sinθ=\frac{1}{2}$”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知F1、F2是橢圓C1:$\frac{{x}^{2}}{4}$+y2=1與雙曲線C2的兩個公共焦點,P是C1,C2一個公共點.若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則C2的離心率是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案