分析 利用正弦定理解出sinA,cosA,根據(jù)兩角和的正弦公式計算sinC,代入三角形的面積公式求得面積.
解答 解:在△ABC中,由正弦定理得$\frac{AC}{sinB}=\frac{BC}{sinA}$,即$\frac{\sqrt{7}}{\frac{\sqrt{3}}{2}}=\frac{2}{sinA}$,
解得sinA=$\frac{\sqrt{21}}{7}$,∴cosA=$\frac{2\sqrt{7}}{7}$.
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{\sqrt{21}}{7}×(-\frac{1}{2})+\frac{2\sqrt{7}}{7}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{21}}{14}$.
∴S△ABC=$\frac{1}{2}AC•BC•sinC$=$\frac{1}{2}×2×\sqrt{7}×\frac{\sqrt{21}}{14}$=$\frac{\sqrt{3}}{2}$.
故答案為$\frac{\sqrt{3}}{2}$.
點評 本題考查了正弦定理,兩角和的正弦公式,三角形的面積計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a6 | B. | a8 | C. | a9 | D. | a10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{7}$ | B. | $\frac{7}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,+∞) | B. | [-2,0] | C. | (-∞,2] | D. | [-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2i | B. | -2i | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題p∨q是假命題 | B. | 命題p∧q是真命題 | ||
C. | 命題p∨(¬q)是假命題 | D. | 命題p∧(¬q)是真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com