5.若函數(shù)f(x)=$\frac{1}{2}$cos2x,則f(x)是( 。
A.最小正周期為$\frac{π}{2}$的奇函數(shù)B.最小正周期為π的奇函數(shù)
C.最小正周期為π的偶函數(shù)D.最小正周期為2π的偶函數(shù)

分析 由條件利用余弦函數(shù)的周期性、奇偶性得出結(jié)論.

解答 解:∵函數(shù)f(x)=$\frac{1}{2}$cos2x,則f(x)的最小正周期為$\frac{2π}{2}$=π,且f(x)為偶函數(shù),
故選:C.

點(diǎn)評(píng) 本題主要考查余弦函數(shù)的周期性、奇偶性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知sinx=m,cos2x=m-$\frac{8}{25}$,x∈(0,π)
(Ⅰ)求m的值;
(Ⅱ)求tan(x-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.$\underset{lim}{n→∞}$$\frac{4{n}^{2}-7}{{n}^{2}+5n+3}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓C:x2+y2+2x-4y+3=0.
(1)直線l過點(diǎn)(-2,0)且被圓C截得的弦長為2,求直線l的方程;
(2)從圓C外一點(diǎn)P向圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求|PM|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在(3-x)5的展開式中,含x3的項(xiàng)的系數(shù)是-90(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a>0且a≠1,函數(shù)k(x)=loga(x+1),f(x)=loga(x+1),g(x)=loga$\frac{1}{1-x}$,記F(x)=2k(x)+g(x).
(1)求函數(shù)F(x)的定義域D及其零點(diǎn);
(2)若關(guān)于x的方程F(x)-m=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)q(q>0,q≠1)是一個(gè)公比為q(q>0,q≠1)等比數(shù)列,4a1,3a2,2a3成等差數(shù)列,且它的前4項(xiàng)和s4=15.
(Ⅰ)求數(shù)列bn=$\frac{a_n}{n}$,(n=1,2,3…)的通項(xiàng)公式;
(Ⅱ)令bn=an+2n,(n=1,2,3…),求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過點(diǎn)(-3,4),則cosα=( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知p:?x∈R,mx2+1≤0,q:?x∈R,x2+mx+1>0.若p∨q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案