6.到定點(diǎn)(1,0,0)的距離不大于1的點(diǎn)集合為( 。
A.{(x,y,z)|(x-1)2+y2+z2≤1}B.{(x,y,z)|(x-1)2+y2+z2=1}
C.{(x,y,z)|(x-1)+y+z≤1}D.{(x,y,z)|x2+y2+z2≤1}

分析 根據(jù)空間中兩點(diǎn)間的距離公式,進(jìn)行化簡(jiǎn)即可得出結(jié)論.

解答 解:到定點(diǎn)(1,0,0)的距離不大于1的點(diǎn)集合為
M={P||PA|≤1}={(x,y,z)|(x-1)2+y2+z2≤1}.
故選:A.

點(diǎn)評(píng) 本題考查了空間兩點(diǎn)間的距離公式的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知a,b,c,d為實(shí)數(shù),e是自然對(duì)數(shù)的底數(shù),且eb=2a-1,d=2c+3,則(a-c)2+(b-d)2的最小值5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{13}$,則向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}是遞增的等比數(shù)列,且a2+a3=6,a1a4=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足$\frac{a_1}{b_1}$+$\frac{a_2}{b_2}$+…+$\frac{a_n}{b_n}$=2n•(n2+n+2)(n∈N*),求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)(xlnx)′=lnx+1,那么$\int_{1}^{e}$lnxdx=( 。
A.1B.eC.e-1D.e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.橢圓$\frac{x^2}{4}$+$\frac{y^2}{9}$=1的焦距是(  )
A.2B.2($\sqrt{3}$-$\sqrt{2}$)C.2$\sqrt{5}$D.2($\sqrt{3}$+$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知△ABC中角A、B、C所對(duì)的邊分別為a、b、c,若a=3$\sqrt{2}$,b=2$\sqrt{3}$,cosC=$\frac{1}{3}$,則△ABC的面積為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.從4名男生和2名女生中任選3人參加演講比賽,設(shè)隨機(jī)變量X表示所選3人中女生的人數(shù).
(1)求X的分布列;
(2)求X的均值與方差;
(3)求“所選3人中女生人數(shù)X≤1”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求數(shù)列{$\frac{1}{\sqrt{2n-1}+\sqrt{2n+1}}$}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案