分析 對式子|${\vec a-2\vec b}$|=2$\sqrt{3}$兩邊平方,計算$\overrightarrow{a}•\overrightarrow$,再計算cos<$\overrightarrow{a},\overrightarrow$>得出向量的夾角.
解答 解:∵|${\vec a-2\vec b}$|=2$\sqrt{3}$,∴${\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow$+4${\overrightarrow}^{2}$=12,
∵${\overrightarrow{a}}^{2}$=|$\overrightarrow{a}$|2=4,${\overrightarrow}^{2}$=|$\overrightarrow$|2=1,
∴$\overrightarrow{a}•\overrightarrow$=-1,
∴cos<$\overrightarrow{a},\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=-$\frac{1}{2}$,
∴<$\overrightarrow{a},\overrightarrow$>=120°,
故答案為:120°.
點評 本題考查了平面向量的數(shù)量積運算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com