5.設實數(shù)x,y滿足不等式$\left\{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≤0}\end{array}\right.$,目標函數(shù)z=ax+y的最大值不大于3a,則實數(shù)a的取值范圍為a≥2.

分析 畫出滿足不等式$\left\{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≤0}\end{array}\right.$的平面區(qū)域,然后分析平面區(qū)域里各個角點,進一步分目標函數(shù)z=ax+y的最大值為3a,構(gòu)造一個關于a的不等式,解不等式即可求出a的范圍.

解答 解:滿足不等式$\left\{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≤0}\end{array}\right.$的平面區(qū)域,如下圖所示:
由圖可知,求出三條邊界直線的交點分別為:
B(0,1),A(2,2),C(1,0).
由目標函數(shù)z=ax+y的最大值不大于3a,
將這三點分別代入z=ax+y,
組成不等式組1≤3a,2a+2≤3a,a≤3a.
解得a≥2.
故答案為:a≥2.

點評 在解決線性規(guī)劃的小題時,常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標⇒③將坐標逐一代入目標函數(shù)⇒④驗證,求出最優(yōu)解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知空間四邊形ABCD,滿足|$\overrightarrow{AB}$|=3,|$\overrightarrow{BC}$|=7,|$\overrightarrow{CD}$|=11,|$\overrightarrow{DA}$|=9,則$\overrightarrow{AC}$•$\overrightarrow{BD}$的值(  )
A.-1B.0C.$\frac{21}{2}$D.$\frac{33}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,x≤1}\\{lnx,x>1}\end{array}\right.$若|f(x)|+a≥ax,則a的取值范圍是(  )
A.[-2,0)B.[0,1]C.(0,1]D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=sinωx-cosωx(ω>0)的最小正周期為π.
(1)求函數(shù)y=f(x)圖象的對稱軸方程;
(2)討論函數(shù)f(x)在$[0,\frac{π}{2}]$上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖,函數(shù)f(x)的圖象是折線段ABC,其中A,B,C的坐標分別為(0,4),(2,0),(6,4),則f′(1)+f(3)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=2x的值域為A,g(x)=lnx的定義域為B,則( 。
A.A∩B=(0,1)B.A∪B=RC.B?AD.A=B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.化簡:
(1)lg8000+lg125-10lg4;
(2)(log32+log92)•(log43+log83)
(3)$\sqrt{2}$×$\root{4}{2}$×$\root{8}{2}$×…×$\root{{2}^{n}}{2}$…(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若a=log1664,b=lg0.2,c=20.2,則( 。
A.c<b<aB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.某市市民月收入ξ(單位:元)服從正態(tài)分布N(3000,σ2),且P(ξ<1000)=0.1962,則P(3000≤ξ≤5000)=( 。
A.0.3038B.0.3924C.0.6076D.0.8038

查看答案和解析>>

同步練習冊答案