2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,x≤1}\\{lnx,x>1}\end{array}\right.$若|f(x)|+a≥ax,則a的取值范圍是( 。
A.[-2,0)B.[0,1]C.(0,1]D.[-2,0]

分析 ①當(dāng)x≤1時,f(x)|+a≥ax,化簡為x2-4x+3+a≥ax,分離參數(shù)a,利用恒成立思想可求得a≥-2;②當(dāng)x>1時,|f(x)|+a≥ax化簡為lnx≥a(x-1),作圖,由函數(shù)圖象可知a≤0,從而可得答案.

解答 解:①當(dāng)x≤1時,f(x)=-x2+4x-3=-(x-2)2+1≤0,
所以|f(x)|+a≥ax,化簡為x2-4x+3+a≥ax,
即a(x-1)≤x2-4x+3=(x-1)2-2(x-1),
因?yàn)閤≤1,所以a≥x-1-2恒成立,所以a≥-2;
②當(dāng)x>1時,f(x)=lnx>0,所以|f(x)|+a≥ax化簡為lnx≥a(x-1)恒成立,如圖:

由函數(shù)圖象可知a≤0,
綜上,當(dāng)-2≤a≤0時,不等式|f(x)|+a≥ax恒成立
故選:D

點(diǎn)評 本題考查分段函數(shù)的應(yīng)用,突出考查等價轉(zhuǎn)化思想、分類討論思想與數(shù)形結(jié)合思想的綜合運(yùn)用,當(dāng)x≤1時,分離參數(shù),當(dāng)x>1時作圖都是關(guān)鍵,考查恒成立問題,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}+2cosθ}\\{y=2\sqrt{2}+2sinθ}\end{array}\right.$,(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為(3$\sqrt{2}$,$\frac{π}{2}$).
(Ⅰ)求直線l以及曲線C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C交于A、B兩點(diǎn),求三角形PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.從區(qū)間[-1,1]內(nèi)隨機(jī)取出一個數(shù)a,使3a+1>0的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.直線l:y=k(x+$\sqrt{2}$)與曲線C:x2-y2=1(x<0)相交于P,Q兩點(diǎn),則直線l的傾斜角的取值范圍是( 。
A.($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)B.($\frac{π}{4}$,$\frac{3π}{4}$)C.(0,$\frac{π}{2}$)∪($\frac{π}{2}$,π)D.[0,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,-2),若$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$垂直,則實(shí)數(shù)x的值是( 。
A.±1B.1C.-1D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,拋物線y2=2px(p>0)和圓x2+y2-px=0,直線l經(jīng)過拋物線的焦點(diǎn),依次交拋物線與圓于A,B,C,D四點(diǎn),|AB|•|CD|=2則p的值為(  )
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)={sin^4}x+{cos^4}x,x∈[-\frac{π}{4},\frac{π}{4}]$,若f(x1)<f(x2),則一定有( 。
A.x1<x2B.x1>x2C.${x_1}^2<{x_2}^2$D.${x_1}^2>{x_2}^2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)實(shí)數(shù)x,y滿足不等式$\left\{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≤0}\end{array}\right.$,目標(biāo)函數(shù)z=ax+y的最大值不大于3a,則實(shí)數(shù)a的取值范圍為a≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.隨機(jī)擲一枚質(zhì)地均勻的骰子,記向上的點(diǎn)數(shù)為m,已知向量$\overrightarrow{AB}$=(m,1),$\overrightarrow{BC}$=(2-m,-4),設(shè)X=$\overrightarrow{AB}$•$\overrightarrow{AC}$,則X的數(shù)學(xué)期望E(X)=4.

查看答案和解析>>

同步練習(xí)冊答案