【題目】如圖,已知為橢圓上的點,且,過點的動直線與圓相交于兩點,過點作直線的垂線與橢圓相交于點

(1)求橢圓的離心率;

(2)若,求

【答案】(1)(2)

【解析】試題分析:(1)根據(jù)題意列方程組: ,解方程組可得, ,再根據(jù)離心率定義求橢圓的離心率;(2)先根據(jù)垂徑定理求圓心到直線的距離,再根據(jù)點到直線距離公式求直線AB的斜率,根據(jù)垂直關(guān)系可得直線PQ的斜率,最后聯(lián)立直線PQ與橢圓方程,利用韋達(dá)定理及弦長公式求

試題解析:解:(1)依題知,

解得,所以橢圓的離心率

(2)依題知圓的圓心為原點,半徑為,

所以原點到直線的距離為

因為點坐標(biāo)為,所以直線的斜率存在,設(shè)為

所以直線的方程為,即,

所以,解得

①當(dāng)時,此時直線的方程為

所以的值為點縱坐標(biāo)的兩倍,即

②當(dāng)時,直線的方程為

將它代入橢圓的方程,消去并整理,得

設(shè)點坐標(biāo)為,所以,解得,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信紅包是一款可以實現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機應(yīng)用.某網(wǎng)絡(luò)運營商對甲、乙兩個品牌各5種型號的手機在相同環(huán)境下?lián)尩降募t包個數(shù)進行統(tǒng)計,得到如下數(shù)據(jù):

手機品牌 型號

I

II

III

IV

V

甲品牌(個)

4

3

8

6

12

乙品牌(乙)

5

7

9

4

3

手機品牌 紅包個數(shù)

優(yōu)

非優(yōu)

合計

甲品牌(個)

乙品牌(個)

合計

(1)如果搶到紅包個數(shù)超過5個的手機型號為“優(yōu)”,否則為“非優(yōu)”,請完成上述2×2列聯(lián)表,據(jù)此判斷是否有85%的把握認(rèn)為搶到的紅包個數(shù)與手機品牌有關(guān)?

(2)如果不考慮其他因素,要從甲品牌的5種型號中選出3種型號的手機進行大規(guī)模宣傳銷售.

①求在型號I被選中的條件下,型號II也被選中的概率;

②以表示選中的手機型號中搶到的紅包超過5個的型號種數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+x2f'(1).
(1)求f'(1)和函數(shù)x的極值;
(2)若關(guān)于x的方程f(x)=a有3個不同實根,求實數(shù)a的取值范圍;
(3)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入的N是4,那么輸出的p是(
A.6
B.10
C.24
D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線y2=2px(p>0)的焦點為F,已知A,B為拋物線上的兩個動點,且滿足∠AFB=120°,過弦AB的中點M作拋物線準(zhǔn)線的垂線MN,垂足為N,則 的最大值為(
A.2
B.
C.1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為(﹣2,1),則函數(shù)f(2x﹣1)的定義域為(
A.(﹣ ,1)
B.(﹣5,1)
C.( ,1)
D.(﹣2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù)f(x)=31+|x| ,則使得f(x)>f(2x﹣1)成立的x的取值范圍是(
A.
B.
C.(﹣ ,
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù), 為傾斜角),以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的普通方程和參數(shù)方程;

(Ⅱ)設(shè)與曲線交于, 兩點,求線段的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若方程有兩根,求的取值范圍;

(Ⅱ)在(Ⅰ)的前提下,設(shè),求證: 隨著的減小而增大;

(Ⅲ)若不等式恒成立,求證: ).

查看答案和解析>>

同步練習(xí)冊答案