19.在數(shù)列{an}中,a1=1,an+1=an+c(c為常數(shù),n∈N+,且a1,a2,a5成公比q≠1的等比數(shù)列.
(1)求c的值;
(2)數(shù)列{bn}的前n項(xiàng)和為Sn且滿(mǎn)足:an•an+1•bn=1,求證:$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

分析 (1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.
(2)利用“裂項(xiàng)求和”方法、數(shù)列的單調(diào)性即可證明.

解答 (1)解:∵a1=1,an+1=an+c(c為常數(shù),n∈N+
∴a2=1+c,a5=1+4c.
∵a1,a2,a5成公比q≠1的等比數(shù)列,∴${a}_{2}^{2}$=a1a5
∴(1+c)2=1×(1+4c),解得c=0,或2.
c=0時(shí),q=1,舍去.
∴c=2.
(2)證明:∵an+1=an+2,可得:an+1-an=2.
∴an=1+2(n-1)=2n-1.
∵an•an+1•bn=1,∴bn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$$(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴數(shù)列{bn}的前n項(xiàng)和為Sn=$\frac{1}{2}$$[(1-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}$$(1-\frac{1}{2n+1})$<$\frac{1}{2}$.
又?jǐn)?shù)列$\{-\frac{1}{2n+1}\}$單調(diào)遞增,∴Sn≥S1=$\frac{1}{2}×(1-\frac{1}{3})$=$\frac{1}{3}$.
∴$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在用二分法求方程log2x=$\frac{1}{3}$x的一個(gè)近似解時(shí),現(xiàn)在已經(jīng)將一根鎖定在(1,2)內(nèi),則下一步可斷定該根所在的區(qū)間為( 。
A.(1.4,2)B.(1,1.4)C.(1,1.5)D.(1.5,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4).
(1)求過(guò)點(diǎn)A的圓M的切線(xiàn)方程;
(2)設(shè)平行于OA的直線(xiàn)l與圓M相交于B,C兩點(diǎn),且BC=OA,求直線(xiàn)l的方程;
(3)設(shè)點(diǎn)T(t,0)滿(mǎn)足:存在圓M上的兩點(diǎn)P和Q,使得$\overrightarrow{TA}$+$\overrightarrow{TP}$=$\overrightarrow{TQ}$,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)數(shù)列{an},{bn}都是等差數(shù)列,若a1+b1=7,a5+b5=35,則a3+b3=21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)實(shí)數(shù)在區(qū)間[-1,1]內(nèi)任取兩個(gè)數(shù),則這兩個(gè)數(shù)的平方和小于1的概率是( 。
A.$\frac{3}{8}$B.$\frac{1}{8}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在等差數(shù)列{an}中,a7=12,則a2+a12的值是(  )
A.24B.48C.96D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合M={x|x=k+$\frac{1}{2}$,k∈Z},N={x|x=$\frac{k}{2}$+1,k∈Z},若x0∈M,則x0與N的關(guān)系是(  )
A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,∠BAC為伸入江中的半島,AB和AC為兩江岸,M處為水文站,N處為電訊局,現(xiàn)欲在兩江岸AB和AC上各建一個(gè)水文觀(guān)測(cè)點(diǎn)P、Q,現(xiàn)測(cè)得∠BAC=45°,當(dāng)直角坐標(biāo)系以點(diǎn)A為坐標(biāo)原點(diǎn)且以直線(xiàn)BA為x軸時(shí),測(cè)得M(-4,1)、N(-3,2).P、Q兩點(diǎn)應(yīng)建在何處才能使路程MPQN最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等差數(shù)列{an}的公差大于零,且a2、a4是方程x2-18x+65=0的兩個(gè)根;各項(xiàng)均為正數(shù)的等比數(shù)列{bn}的前n項(xiàng)和為Sn,且滿(mǎn)足b3=a3,S3=13.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}滿(mǎn)足cn=$\left\{\begin{array}{l}{{a}_{n},n≤6}\\{_{n},n>6}\end{array}\right.$,求數(shù)列的前項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案