13.若復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于y軸對(duì)稱,且z1=2-i,則復(fù)數(shù)$\frac{{z}_{1}}{{z}_{2}}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由z1=2-i,復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于y軸對(duì)稱,求出z2,然后代入$\frac{{z}_{1}}{{z}_{2}}$,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出復(fù)數(shù)$\frac{{z}_{1}}{{z}_{2}}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo),則答案可求.

解答 解:∵z1=2-i,復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于y軸對(duì)稱,
∴z2=-2-i.
∴$\frac{{z}_{1}}{{z}_{2}}$=$\frac{2-i}{-2-i}=\frac{(2-i)(-2+i)}{(-2-i)(-2+i)}=\frac{-3+4i}{5}$=$-\frac{3}{5}+\frac{4}{5}i$,
則復(fù)數(shù)$\frac{{z}_{1}}{{z}_{2}}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為:($-\frac{3}{5}$,$\frac{4}{5}$),位于第二象限.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知二次函數(shù)f(x)滿足f(x+2)=f(2-x),且f(x)=0的兩根平方和為10,圖象過點(diǎn)(0,3).
(1)求f(5)的值;
(2)若函數(shù)f(x)在定義域[a,+∞)上f(x)≥8恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四邊形ABCD是邊長為2的菱形,∠ABC=60°,E,F(xiàn)分別為DC,AB的中點(diǎn),將△DAE沿AE折起,使得∠DEC=120°.
(Ⅰ)求證:平面DCF⊥平面DCE;
(Ⅱ)求點(diǎn)B到平面DCF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,已知OPQ是半徑為1,圓心角為$\frac{π}{3}$的扇形,C是扇形弧上的動(dòng)點(diǎn),ABCD是扇形的內(nèi)接矩形.記∠COP=α,則矩形ABCD的面積最大是$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U=R,集合A={x|2x2-3x-2=0},集合B={x|x>1},則A∩(∁UB)=(  )
A.{2}B.{x|x≤1}C.{-$\frac{1}{2}$}D.{x|x≤1或x=2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下面幾何體的截面一定是圓面的是( 。
A.圓臺(tái)B.C.圓柱D.棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.觀察下列等式:
12=1
32=2+3+4
52=3+4+5+6+7
72=4+5+6+7+8+9+10
92=5+6+7+8+9+10+11+12+13

n2=100+101+102+…+m
則n+m=497.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)常數(shù)a>0,函數(shù)f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$為奇函數(shù),則a的值為( 。
A.1B.-2C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.用一個(gè)平面截半徑為25cm的球,截面面積是225πcm2,則球心到截面的距離是( 。
A.5cmB.10cmC.15cmD.20cm

查看答案和解析>>

同步練習(xí)冊(cè)答案