分析 如圖先用所給的角將矩形的面積表示出來,建立三角函數(shù)模型,再根據(jù)所建立的模型利用三角函數(shù)的性質(zhì)求最值.
解答 解:如圖,在Rt△OBC中,OB=cosα,BC=sinα,
在Rt△OAD中,$\frac{DA}{OA}$=tan60°=$\sqrt{3}$,
所以O(shè)A=$\frac{\sqrt{3}}{3}$DA=$\frac{\sqrt{3}}{3}$BC=$\frac{\sqrt{3}}{3}$sinα.
所以AB=OB-OA=cosα-$\frac{\sqrt{3}}{3}$sinα.
設(shè)矩形ABCD的面積為S,
則S=AB•BC=(cosα-$\frac{\sqrt{3}}{3}$sinα)sinα=sinαcosα-$\frac{\sqrt{3}}{3}$sin2α
=$\frac{1}{2}$sin2α+$\frac{\sqrt{3}}{6}$cos2α-$\frac{\sqrt{3}}{6}$=$\frac{1}{\sqrt{3}}$($\frac{\sqrt{3}}{2}$sin2α+$\frac{1}{2}$cos2α)-$\frac{\sqrt{3}}{6}$
=$\frac{1}{\sqrt{3}}$sin(2α+$\frac{π}{6}$)-$\frac{\sqrt{3}}{6}$.
由于0<α<$\frac{π}{3}$,所以當(dāng)2α+$\frac{π}{6}$=$\frac{π}{2}$,即α=$\frac{π}{6}$時(shí),S最大=$\frac{1}{\sqrt{3}}$-$\frac{\sqrt{3}}{6}$=$\frac{\sqrt{3}}{6}$.
因此,當(dāng)α=$\frac{π}{6}$時(shí),矩形ABCD的面積最大,最大面積為$\frac{\sqrt{3}}{6}$.
故答案為:$\frac{\sqrt{3}}{6}$.
點(diǎn)評 本題考查在實(shí)際問題中建立三角函數(shù)模型,求解問題的關(guān)鍵是根據(jù)圖形建立起三角模型,將三角模型用所學(xué)的恒等式變換公式進(jìn)行化簡,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∨¬q | C. | ¬p∧¬q | D. | ¬p∧q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{9}{4}$ | C. | $-\frac{4}{9}$ | D. | $-\frac{9}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com