5.設(shè)f(x)在[a,b]上的圖象是連續(xù)不斷的一條曲線,且a≤f(x)≤b,試問(wèn):在[a,b]中是否存在常數(shù)c,使得f(c)=c.

分析 根據(jù)條件構(gòu)造函數(shù)g(x)=f(x)-x,根據(jù)根的存在性定理進(jìn)行證明即可.

解答 解:構(gòu)造函數(shù) g(x)=f(x)-x 顯然 g(x) 在[a,b]上的圖象也是一條連續(xù)不斷的曲線,
因?yàn)樵赱a,b]上總有a≤f(x)≤b,
所以在[a,b]上總有 a-x≤f(x)-x≤b-x,
即在[a,b]上總有a-x≤g(x)≤b-x,
所以g(a)≥a-a=0,
g(b)≤b-b=0,
所以由根的存在性定理得在[a,b]上至少有一個(gè)解,
即方程f(x)-x=0 在[a,b]上至少有一個(gè)解,
即在[a,b]上至少有一個(gè)常數(shù) c,使得 f(c)-c=0,即f(c)=c.

點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)的判斷,根據(jù)條件構(gòu)造函數(shù),利用函數(shù)零點(diǎn)存在的定理是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.直線l與橢圓$\frac{x^2}{4}$+y2=1相交于A?B兩點(diǎn),并且線段AB的中點(diǎn)為M(1,$\frac{1}{2}}$).
(1)求直線l的方程(用一般式表示);
(2)求弦長(zhǎng)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2處取得極大值6,在x=1處取得極小值.
(1)求a,b,c的值;       
(2)求f(x)的單調(diào)區(qū)間;
(3)求f(x)在區(qū)間[-3,3]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.用數(shù)學(xué)歸納法證明:1+x+x2+x3+…+xn+2=$\frac{{1-{x^{n+3}}}}{1-x}$(x≠1,n∈N+)成立時(shí),驗(yàn)證n=1的過(guò)程中左邊的式子是( 。
A.1B.1+xC.1+x+x2D.1+x+x2+x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知直線y=2x+1與曲線y=x3+ax+b相切于點(diǎn)(1,3),則實(shí)數(shù)b的值為( 。
A.1B.-3C.3D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.命題P的否定是:“對(duì)所有正數(shù)x,$\sqrt{x}$>x+1”,則命題P是存在正數(shù)x,$\sqrt{x}$≤x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知△ABC的內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且面積為6,周長(zhǎng)為12,cosB=$\frac{3}{5}$,則邊b為( 。
A.3B.4$\sqrt{2}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知:指數(shù)函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(2,4).
(1)求函數(shù)f(x)的解析式;
(2)若f(x-1)<1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\frac{{{x^2}+1}}{x}$,g(x)=$\frac{x}{e^x}$,對(duì)任意x1,x2∈(0,+∞),不等式$\frac{{g({x_1})}}{k}$≤$\frac{{f({x_2})}}{k+1}$恒成立,則正數(shù)k的取值范圍是$k≥\frac{1}{2e-1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案