【題目】已知函數(shù)f(x)=x﹣2sinx.
(Ⅰ)求函數(shù)f(x)在 上的最值;
(Ⅱ)若存在 ,使得不等式f(x)<ax成立,求實數(shù)a的取值范圍.

【答案】解:(Ⅰ)f'(x)=1﹣2cosx,

x

y'

+

0

0

+

y

極大值

極小值


(Ⅱ)f(x)<ax,
∴2sinx﹣(1﹣a)x>0
設(shè)g(x)=2sinx﹣(1﹣a)x,則g'(x)=2cosx﹣(1﹣a)

①1﹣a≥2即a≤﹣1,此時g'(x)<0得出g(x)在 單調(diào)遞減,g(x)<g(0)=0不成立
②1﹣a≤0即a≥1,此時g'(x)>0得出g(x)在 單調(diào)遞增,g(x)>g(0)=0成立
③0<1﹣a<2即﹣1<a<1,令 ,存在唯一 ,使得 .當(dāng)x∈(0,x0)時,g'(x)>0得出g(x)>g(0)=0,
∴存在 ,有g(shù)(x)>0成立
綜上可知:a>﹣1
【解析】(1)求出導(dǎo)函數(shù),得出極值點,根據(jù)極值點求閉區(qū)間函數(shù)的最值;(2)不等式整理得出2sinx﹣(1﹣a)x>0,構(gòu)造函數(shù),根據(jù)導(dǎo)函數(shù)進行分類討論,即最大值大于零即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a、b、c分別是角A、B、C的對邊,且 =﹣
(Ⅰ)求角B的大小;
(Ⅱ)若b= ,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過點,且斜率為

(I)求直線的方程;

)若直線平行,且點P到直線的距離為3,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為比較甲、乙兩地某月14時的氣溫情況,隨機選取該月中的5天,將這5天中14時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:

①甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫;

②甲地該月14時的平均氣溫高于乙地該月14時的平均氣溫;

③甲地該月14時的平均氣溫的標準差小于乙地該月14時的平均氣溫的標準差;

④甲地該月14時的平均氣溫的標準差大于乙地該月14時的平均氣溫的標準差,

其中根據(jù)莖葉圖能得到的統(tǒng)計結(jié)論的編號為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱 中, , , 是棱上的動點.

證明:

若平面分該棱柱為體積相等的兩個部分,試確定點的位置,并求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是現(xiàn)代生活進行信息交流的重要工具,據(jù)統(tǒng)計,某公司名員工中的人使用微信,其中每天使用微信時間在一小時以內(nèi)的有人,其余每天使用微信在一小時以上.若將員工年齡分成青年(年齡小于歲)和中年(年齡不小于歲)兩個階段,使用微信的人中是青年人.若規(guī)定:每天使用微信時間在一小時以上為經(jīng)常使用微信,經(jīng)常使用微信的員工中是青年人.

)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出列聯(lián)表;


青年人

中年人

合計

經(jīng)常使用微信




不經(jīng)常使用微信




合計




)由列聯(lián)表中所得數(shù)據(jù),是否有的把握認為經(jīng)常使用微信與年齡有關(guān)?

)采用分層抽樣的方法從經(jīng)常使用微信的人中抽取人,從這人中任選人,求事件 選出的人均是青年人的概率.

附:







查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家射擊隊的某隊員射擊一次,命中7~10環(huán)的概率如表所示:

命中環(huán)數(shù)

10環(huán)

9環(huán)

8環(huán)

7環(huán)

概率

0.32

0.28

0.18

0.12

求該射擊隊員射擊一次 求:

(1)射中9環(huán)或10環(huán)的概率;

(2)至少命中8環(huán)的概率;(3)命中不足8環(huán)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,BC邊上的高所在直線的方程為x2y10,A的平分線所在的直線方程為y0.若點B的坐標為(1,2),求點A和點C的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱中, ,ACB=90°,M是 的中點,N是的中點.

Ⅰ)求證:MN∥平面;

求點到平面BMC的距離

查看答案和解析>>

同步練習(xí)冊答案