分析 (1)根據(jù)條件運用離心率公式和菱形的面積公式,求出a,b,即可求橢圓C的標準方程;
(2)①設(shè)PQ的方程為:x=my+1代入橢圓方程,利用根與系數(shù)之間的關(guān)系求出OG和ON的斜率,即可得證;
②討論,當m=0時,求出N的坐標,|NF|,|PQ|的長,計算可得$\frac{|PQ|}{|FN|}$=1;當m≠0時,求得|NF|,運用弦長公式可得|PQ|,再由換元法,設(shè)t=m2+1,轉(zhuǎn)化為t的函數(shù),判斷單調(diào)性,可得所求范圍.
解答 解:(1)由題意可得e=$\frac{c}{a}$=$\frac{1}{2}$,$\frac{1}{2}$•2a•2b=4$\sqrt{3}$,
又a2-b2=c2,
解得a=2,c=1,b=$\sqrt{3}$,
故所求橢圓的方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)①證明:設(shè)直線PQ的方程為:x=my+1,代入橢圓方程3x2+4y2=12,
得(3m2+4)y2+6my-9=0,
則判別式△=36m2+4×9(3m2+4)>0,
設(shè)P(x1,y1),Q(x2,y2),PQ的中點G(x0,y0),
則y1+y2=-$\frac{6m}{3{m}^{2}+4}$,y1y2=-$\frac{9}{3{m}^{2}+4}$,
則y0=$\frac{1}{2}$(y1+y2)=-$\frac{3m}{3{m}^{2}+4}$,x0=my0+1=$\frac{4}{3{m}^{2}+4}$,
即G($\frac{4}{3{m}^{2}+4}$,-$\frac{3m}{3{m}^{2}+4}$),
kOG=-$\frac{3m}{3{m}^{2}+4}$•$\frac{3{m}^{2}+4}{4}$=-$\frac{3m}{4}$,
設(shè)直線FN的方程為:y=-m(x-1),得N點坐標為(4,-3m),
∵kON=-$\frac{3m}{4}$,
∴kOG=kON,
即線段PQ的中點在直線ON上;
②當m=0時,PQ的中點為F,N(4,0),
則|NF|=3,|PQ|=$\frac{2^{2}}{a}$=3,$\frac{|PQ|}{|FN|}$=1;
當m≠0時,|NF|=$\sqrt{(4-1)^{2}+(-3m)^{2}}$=3$\sqrt{{m}^{2}+1}$,
|PQ|=$\sqrt{1+\frac{1}{{{k}_{PQ}}^{2}}}$|y2-y1|=$\sqrt{1+{m}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$
=$\sqrt{1+{m}^{2}}$•$\sqrt{(\frac{-6m}{3{m}^{2}+4})^{2}-4•\frac{-9}{3{m}^{2}+4}}$=12•$\frac{{m}^{2}+1}{3{m}^{2}+4}$,
則$\frac{|PQ|}{|FN|}$=$\frac{4\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$=$\frac{4}{\sqrt{\frac{9{m}^{4}+16+24{m}^{2}}{{m}^{2}+1}}}$,
令t=m2+1,即m2=t-1(t>1),
即有y=$\frac{9{m}^{4}+16+24{m}^{2}}{{m}^{2}+1}$=$\frac{9(t-1)^{2}+16+24(t-1)}{t}$=9t+$\frac{1}{t}$+6,
y′=9-$\frac{1}{{t}^{2}}$>0,可得函數(shù)y在(1,+∞)為增函數(shù),
則y>9+1+6=16,
則0<$\frac{|PQ|}{|FN|}$<$\frac{4}{4}$=1;
綜上可得$\frac{|PQ|}{|FN|}$的取值范圍是(0,1].
點評 本題主要考查橢圓方程的求解以及直線和橢圓的位置關(guān)系是應(yīng)用,利用直線和橢圓方程聯(lián)立轉(zhuǎn)化為一元二次方程問題是解決本題的關(guān)鍵.考查學(xué)生的計算能力,運算量較大,綜合性較強.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -i | B. | i | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{16π}{3}$ | B. | $\frac{32π}{3}$ | C. | 4$\sqrt{3}$ | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com