17.已知{an}是公比為2的等比數(shù)列,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列,bn=nan,則數(shù)列{bn}的前n項(xiàng)和Tn=(n-1)2n+1..

分析 首先利用已知得到關(guān)于等比數(shù)列的首項(xiàng)的等式,求出首項(xiàng),然后得到數(shù)列{bn}的通項(xiàng)公式,根據(jù)其特點(diǎn),利用錯(cuò)位相減法求和即可.

解答 解:由已知{an}是公比為2的等比數(shù)列,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列,
所以6a2=a1+a3+7,即12a1=a1+4a1+7,解得a1=1,
所以${a}_{n}={2}^{n-1}$,
bn=nan=n2n-1
所以數(shù)列{bn}的前n項(xiàng)和Tn=1+2•2+3•22+4•23+…+n2n-1,①
2Tn=2+2•22+3•23+4•24+…+(n-1)2n-1+n2n,②
①-②得-Tn=1+2+22+23+…+2n-1-n2n=$\frac{1-{2}^{n}}{1-2}-n{2}^{n}$,
所以Tn=(n-1)2n+1.
故答案為:(n-1)2n+1.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式求法以及錯(cuò)位相減法求數(shù)列前n項(xiàng)和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如果a<b,那么下列不等式可能正確的是(  )
A.a3>b3B.a2>b2C.lna>lnbD.ea>eb

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若3a9-a11為常數(shù),則以下各數(shù)中一定為常數(shù)的是( 。
A.S14B.S15C.S16D.S17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.sin15°的值為(  )
A.$\frac{\sqrt{6}-\sqrt{2}}{2}$B.$\frac{\sqrt{6}+\sqrt{2}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.若對(duì)任意實(shí)數(shù)x,不等式x2-mx+(m-1)≥0恒成立
(1)求實(shí)數(shù)m的取值集合;
(2)設(shè)a,b是正實(shí)數(shù),且n=(a+$\frac{1}$)(mb+$\frac{1}{ma}$),求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)函數(shù)f(x)=$\frac{2x}{x+1}$(x>0),觀察:
f1(x)=f(x)=$\frac{2x}{x+1}$,
f2(x)=f(f1(x))=$\frac{4x}{3x+1}$,
f3(x)=f(f2(x))=$\frac{8x}{7x+1}$,
f(x)=f(f3(x))=$\frac{16x}{15x+1}$,

根據(jù)以上事實(shí),由歸納推理可得:
當(dāng)n∈N*且n≥2時(shí),fn(x)=f(fn-1(x))=$\frac{{2}^{n}x}{({2}^{n}-1)x+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.直線x=$\frac{π}{12}$是函數(shù)y=asin3x+cos3x的一條對(duì)稱軸,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=ex(x2-bx)(b∈R)在區(qū)間[$\frac{1}{2}$,2]上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)b的取值范圍是( 。
A.(-∞,$\frac{8}{3}$)B.(-∞,$\frac{5}{6}$)C.(-$\frac{3}{2}$,$\frac{5}{6}$)D.($\frac{8}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若y=-$\frac{1}{2}$x2+bln(x+2)在(-1,+∞)上是單調(diào)減函數(shù),則b的范圍是( 。
A.[-1,+∞)B.(-1,+∞)C.(-∞,-1)D.(-∞,-1]

查看答案和解析>>

同步練習(xí)冊(cè)答案