12.如圖是正三棱錐V-ABC的正視圖、側(cè)視圖和俯視圖,則其側(cè)視圖的面積是( 。
A.4B.5C.6D.7

分析 由三視圖求出正三棱錐的棱長、底面正三角形的邊長,根據(jù)正三棱錐的結(jié)構(gòu)特征求出三棱錐的高,即可求出側(cè)視圖的面積.

解答 解:由題意知幾何體是一個正三棱錐,
由三視圖得棱長為4,底面正三角形的邊長為2$\sqrt{3}$,
∴底面正三角形的高是$\sqrt{(2\sqrt{3})^{2}-(\sqrt{3})^{2}}$=3,
∵正三棱錐頂點在底面的射影是底面的中心,
∴正三棱錐的高h=$\sqrt{{4}^{2}-(\frac{2}{3}×3)^{2}}$=$2\sqrt{3}$,
∴側(cè)視圖的面積S=$\frac{1}{2}×BC×h$=$\frac{1}{2}×2\sqrt{3}×2\sqrt{3}$=6,
故選:C.

點評 本題考查正三棱錐的三視圖,由三視圖正確求出幾何元素的長度是解題的關(guān)鍵,考查了空間想象能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)f′(x)=$\frac{1}{x}$,g(x)=f(x)+af′(x).
(1)若a<0,試判斷g(x)在定義域內(nèi)的單調(diào)性;
(2)若g(x)在[1,e]上的最小值為$\frac{3}{2}$,求a的值;
(3)證明:當a≥1時,g(x)>ln(x+1)在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知數(shù)列{an}:$\frac{1}{1}$,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…$\frac{1}{1+2+3+…n}$,…,求它的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=eax(其中e=2.71828…),$g(x)=\frac{f(x)}{x}$.
(1)若g(x)在[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)當$a=\frac{1}{2}$時,求函數(shù)g(x)在[m,m+1](m>0)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,若$a=1,b=\sqrt{2}$,角B是角A和角C的等差中項,則sinA=$\frac{{\sqrt{6}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線$x=\frac{π}{8}$,則φ=-$\frac{3π}{4}$,y=f(x)的單調(diào)增區(qū)間是-$\frac{3π}{4}$,[$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ],k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.函數(shù)f(x)=3sin(ωx+$\frac{π}{4}$)+2(ω>0)圖象的對稱中心和g(x)=2tan($\frac{1}{2}$x+φ)+2圖象的對稱中心完全相同.
(Ⅰ)求f(x)的最小正周期T;
(Ⅱ)求f(x)在區(qū)間[-$\frac{π}{2}$,0]上的最大值M和最小值m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=2sin(ωx)cos(ωx)+msin2(ωx)(ω>0)關(guān)于點($\frac{π}{12},1$)對稱
(Ⅰ)求m的值及f(x)的最小值;
(Ⅱ)在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,最大內(nèi)角A的值為f(x)的最小正周期,若b=2,△ABC面積的取值范圍為[$\frac{\sqrt{3}}{2},\sqrt{3}$],求角A的值及a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx-kx+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0恒成立,試確定實數(shù)k的取值范圍;
(3)證明:ln[2•3•4•…(n+1)]2≤n(n+1)(n∈N,n>1)

查看答案和解析>>

同步練習冊答案