分析 利用等差數(shù)列的性質(zhì)及三角形內(nèi)角和定理可得B的值,根據(jù)正弦定理即可得解sinA的值.
解答 解:∵角B是角A和角C的等差中項(xiàng),即2B=A+C,又A+B+C=π,
∴解得B=$\frac{π}{3}$,
∵$a=1,b=\sqrt{2}$,
在△ABC中,由正弦定理可得:sinA=$\frac{asinB}$=$\frac{1×\frac{\sqrt{3}}{2}}{\sqrt{2}}$=$\frac{{\sqrt{6}}}{4}$.
故答案為:$\frac{{\sqrt{6}}}{4}$.
點(diǎn)評(píng) 本題主要考查了等差數(shù)列的性質(zhì),正弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | α∥β,m?α,n?β⇒m∥n? | B. | α⊥β,m⊥α,n⊥β⇒m⊥n | ||
C. | α⊥β,m∥α,n∥β⇒m⊥n | D. | α∥β,m∥α,n∥β⇒m∥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{1-{k}^{2}}}{k}$ | B. | -$\frac{\sqrt{1-{k}^{2}}}{k}$ | C. | $\frac{k}{\sqrt{1-{k}^{2}}}$ | D. | -$\frac{k}{\sqrt{1-{k}^{2}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com