1.設ω為正實數(shù),若存在a,b(π≤a<b≤2π),使得cosωa+cosωb=2,則ω的取值范圍是{2}∪[3,+∞).

分析 運用三角函數(shù)的有界性,結合三角函數(shù)的周期性,分析得到答案.

解答 解:要cosωa+cosωb=2,則有cosωa=cosωb=1;
余弦函數(shù)y=cosx圖象如下:

可知,當x=2kπ時,cosx=1,
∵cosωa+cosωb=2,π≤a<b≤2π
∴必有ωa=2kπ,ωb=2kπ+nπ,(k,n∈N+),
∴$\left\{\begin{array}{l}{ωπ≤2kπ}\\{ω•2π≥2kπ+2π}\end{array}\right.,k∈{N}_{+}$
得到k+1≤ω≤2k(k∈N+),
①k=1時,ω=2,
②k=2時,3≤ω≤4,
③k=3時,4≤ω≤6,
④k=4時,5≤ω≤8,

可得ω的取值范圍為{2}∪[3,+∞).

點評 本題考查三角函數(shù)的值域,涉及不等式的性質和分類討論的思想,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)的導函數(shù)f′(x)在R上恒大于0,則對任意x1,x2(x1≠x2)在R上$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$的符號是正(填“正”、“負”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.對于任意實數(shù)x,不等式2mx2+mx-$\frac{3}{4}$<0恒成立,則實數(shù)m的取值范圍是-6<m≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知[x]表示不超過x的最大整數(shù),則不等式組$\left\{\begin{array}{l}{y≤k(x-\frac{1}{2})+\frac{1}{2},k∈R}\\{[x]^{2}+[y]^{2}≤1}\end{array}\right.$表示的平面區(qū)域面積為s,那么s=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若(3x+$\frac{1}{{x}^{2}}$-2)4的展開式中所有項的系數(shù)的和為16,則展開式中的常數(shù)項為-200(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn=3n-1.
(1)求a1,a2,a3的值;
(2)求數(shù)列{an}的通項公式;
(3)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知a,b∈R+,且a+b+ab=8,求ab的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知等比數(shù)列{an}的通項公式為an=3n-1,數(shù)列{bn}滿足對任意正整數(shù)n,都有$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+$\frac{_{3}}{{a}_{3}}$+…+$\frac{_{n}}{{a}_{n}}$=2n+1恒成立.
(1)求數(shù)列{bn}的通項公式;
(2)求b1+b2+b3+…+b2015的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為2π,且其圖象關于y軸對稱,則( 。
A.f(x)在(0,$\frac{π}{2}$)上單調遞增B.f(x)在($\frac{π}{4}$,$\frac{3π}{2}$)上單調遞減
C.f(x)在(0,$\frac{π}{2}$)上單調遞減D.f(x)在($\frac{π}{4}$,$\frac{3π}{2}$)上單調遞增

查看答案和解析>>

同步練習冊答案