12.等差數(shù)列{an}的前n項和為Sn,已知a1=10,a2為整數(shù),且s4是sn的最大值.
(I)求{an}的通項公式;
(II)設${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

分析 (I)利用已知條件求出數(shù)列的公差,然后求{an}的通項公式;
(II)化簡數(shù)列的表達式,利用裂項消項法求解數(shù)列的和即可.

解答 (每小題(6分),共12分)
解:(I)由a1=10,a2為整數(shù)知,等差數(shù)列{an}的公差d為整數(shù).
又Sn≤S4,故a4≥0,a5≤0,(2分)
于是10+3d≥0,10+4d≤0,解得$-\frac{10}{3}≤d≤-\frac{5}{2}$,因此d=-3,(4分)
故數(shù)列{an}的通項公式為an=13-3n. (6分)
(II)∵${b_n}=\frac{1}{{({13-3n})({10-3n})}}=\frac{1}{3}({\frac{1}{10-3n}-\frac{1}{13-3n}})$,(8分)
于是Tn=b1+b2+b3+…+bn
=$\frac{1}{3}[(\frac{1}{7}-\frac{1}{10})+(\frac{1}{4}-\frac{1}{7})+…+(\frac{1}{10-3n}-\frac{1}{12-3n})]$
=$\frac{1}{3}(\frac{1}{10-3n}-\frac{1}{10})$
=$\frac{n}{10(10-3n)}$.(12分)

點評 本題考查數(shù)列的遞推關系式的應用,數(shù)列求和,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.數(shù)列{an}中,a1=3,對任意n∈N*,向量$\overrightarrow{a}$=(an+1,3)與$\overrightarrow$=(an,1)都平行,數(shù)列{bn}滿足bn=31-31log3an
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Bn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系中,求下列方程所對應的圖形經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{1}{3}y}\end{array}\right.$后的圖形.
(1)5x+2y=0
(2)x2+y2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設α,β為銳角,且滿足sin2α+sin2β=sin(α+β),則α+β=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.f(x)=|x-3|-2,g(x)=4-|x+1|
(Ⅰ)若f(x)≥g(x),求x的取值范圍;
(Ⅱ)若不等式f(x)-g(x)≥a2-3a的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若函數(shù)f(x)=lnx的圖象與直線$y=\frac{1}{2}x+a$相切,則a=(  )
A.2ln2B.ln2+1C.ln2D.ln2-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.對于實數(shù)a,b,c,有以下命題:
①若a>b,則ac<bc;
②若ac2>bc2,則a>b;
③若a<b<0,則a2>ab>b2;
④若$a>b,\frac{1}{a}>\frac{1}$,則a>0,b<0.
其中真命題的個數(shù)是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知m∈R,復數(shù)z=$\frac{{m({m+2})}}{m-1}+({{m^2}+2m-3})i$,當m為何值時,
(1)z∈R?
(2)z是虛數(shù)?
(3)z是純虛數(shù)?
(4)z對應的點位于復平面第二象限?
(5)z對應的點在直線x+y+3=0上?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.根據(jù)某固定測速點測得的某時段內(nèi)過往的200輛機動車的行駛速度(單位:km/h)繪制的頻率分布直方圖如圖所示.該路段限速標志牌提示機動車輛正常行駛速度為60km/h-120km/h,則該時段內(nèi)非正常行駛的機動車輛數(shù)為30.

查看答案和解析>>

同步練習冊答案