Processing math: 100%
20.平面直角坐標系xOy中,雙曲線C1x2a2y2b2=1(a>0,b>0)的漸近線與拋物線C2:x2=2py(p>0)交于點O,A,B.若△OAB的垂心為C2的焦點,則C1的漸近線方程為y=±52x

分析 由三角形垂心的性質(zhì),得BF⊥OA,即kBF•kOA=-1,由此可得C1的漸近線方程.

解答 解:聯(lián)立漸近線與拋物線方程得A2pba2pb2a2B2pba2pb2a2,拋物線焦點為F0p2,
由三角形垂心的性質(zhì),得BF⊥OA,即kBF•kOA=-1,
kBF=p22pb2a22pba=a4bakOA=a
所以a4baa=1b2a2=54
所以C1的漸近線方程為y=±52x
故答案為:y=±52x

點評 本題考查雙曲線的性質(zhì),聯(lián)立方程組,根據(jù)三角形垂心的性質(zhì),得BF⊥OA是解決本題的關(guān)鍵,考查學(xué)生的計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)fx=2ax2bx+1,若a是從區(qū)間(0,2)任取的一個數(shù),b是從區(qū)間(0,2)任取的一個數(shù),則此函數(shù)在[1,+∞)遞增的概率( �。�
A.34B.14C.13D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.含有參數(shù)形式的復(fù)數(shù)如:3m+9+(m2+5m+6)i,(m∈R)何時表示實數(shù)、虛數(shù)、純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若sinθ>0且sin2θ>0,則角θ的終邊所在象限是( �。�
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=x23的導(dǎo)函數(shù)為(  )
A.y=23x13B.y=x13C.y=23x13D.y=\frac{2}{{3\root{3}{x}}}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=ax-x,a∈R.
(Ⅰ)若a=-1,求f(x)在區(qū)間[12,3]上的最大值;
(Ⅱ)設(shè)b≠0,求證:當(dāng)a=-1時,過點P(b,-b)有且只有一條直線與曲線y=f(x)相切;
(Ⅲ)若對任意的x∈[12,2],均有f(x)|x-1|≤1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.f(x)是定義在R上的可導(dǎo)函數(shù),則f′(x0)=0是x0為f(x) 的極值點的必要不充分條件.(填充分不必要,必要不充分,充要條件或既不充分也不必要)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若非零不共線向量a、\overrightarrow滿足|a-|=|\overrightarrow|,則下列結(jié)論正確的個數(shù)是|.( �。�
①向量a的夾角恒為銳角  ②2|\overrightarrow|2a  ③|2\overrightarrow|>|a-2|④|2a|>|2a-|.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)、g(x)、h(x)是定義域為R的三個函數(shù).對于命題:
①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數(shù),則f(x)、g(x)、h(x) 均是以T為周期的函數(shù);
 ②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函數(shù),則f(x)、g(x)、h(x)均是增函數(shù),
下列判斷正確的是(  )
A.①和②均為真命題B.①和②均為假命題
C.①為真命題,②為假命題D.①為假命題,②為真命題

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹