分析 由三角形垂心的性質(zhì),得BF⊥OA,即kBF•kOA=-1,由此可得C1的漸近線方程.
解答 解:聯(lián)立漸近線與拋物線方程得A(2pba,2pb2a2),B(−2pba,2pb2a2),拋物線焦點為F(0,p2),
由三角形垂心的性質(zhì),得BF⊥OA,即kBF•kOA=-1,
又kBF=p2−2pb2a22pba=a4b−a,kOA=a,
所以(a4b−a)a=−1⇒b2a2=54.
所以C1的漸近線方程為y=±√52x.
故答案為:y=±√52x.
點評 本題考查雙曲線的性質(zhì),聯(lián)立方程組,根據(jù)三角形垂心的性質(zhì),得BF⊥OA是解決本題的關(guān)鍵,考查學(xué)生的計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 34 | B. | 14 | C. | 13 | D. | 23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=23x13 | B. | y=x−13 | C. | y=−23x−13 | D. | y=\frac{2}{{3\root{3}{x}}} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①和②均為真命題 | B. | ①和②均為假命題 | ||
C. | ①為真命題,②為假命題 | D. | ①為假命題,②為真命題 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com