A. | ①和②均為真命題 | B. | ①和②均為假命題 | ||
C. | ①為真命題,②為假命題 | D. | ①為假命題,②為真命題 |
分析 ①根據定義得f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),由此得出:g(x)=g(x+T),h(x)=h(x+T),f(x)=f(x+T),即可判斷出真假;
②舉反例說明命題不成立.
解答 解:對于①,∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),
前兩式作差可得:g(x)-h(x)=g(x+T)-h(x+T),結合第三式可得:g(x)=g(x+T),h(x)=h(x+T),
同理可得:f(x)=f(x+T),所以①是真命題.
對于②,舉反例說明:f(x)=2x,g(x)=-x,h(x)=3x;
f(x)+g(x)=x,f(x)+h(x)=5x,g(x)+h(x)=2x都是定義域R上的增函數,但g(x)=-x不是增函數,所以②是假命題;
故選:C.
點評 本題考查了函數的單調性與周期性、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題目.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{67}{5}$ | B. | $\frac{52}{5}$ | C. | $\frac{42}{5}$ | D. | $\frac{17}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 49π | B. | 36π | C. | 7π | D. | 6π |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 60° | B. | 90° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com