4.若函數(shù)y=f(x+1)是偶函數(shù),則下列說(shuō)法正確的序號(hào)是(1)(2)(4)
(1)y=f(x)圖象關(guān)于直線x=1對(duì)稱     
(2)y=f(x+1)圖象關(guān)于y軸對(duì)稱
(3)必有f(1+x)=f(-1-x)成立  
(4)必有f(1+x)=f(1-x)成立.

分析 根據(jù)偶函數(shù)的定義“對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都滿足f(x)=f(-x),則函數(shù)f(x)為偶函數(shù)”及“偶函數(shù)的圖象關(guān)于y軸對(duì)稱”進(jìn)行判定.

解答 解:(1)由于y=f(x)圖象是由函數(shù)y=f(x+1)的圖象向右平移一個(gè)單位得到,故y=f(x)圖象關(guān)于直線x=1對(duì)稱,正確;
(2)由于函數(shù)y=f(x+1)是偶函數(shù),故y=f(x+1)圖象關(guān)于y軸對(duì)稱;正確;
(3)函數(shù)y=f(x+1)是偶函數(shù),有f(1+x)=f(1-x)成立,故錯(cuò)誤;
(4)函數(shù)y=f(x+1)是偶函數(shù),有f(1+x)=f(1-x)成立,正確;
綜上知,正確的序號(hào)是(1)(2)(4).
故答案為(1)(2)(4).

點(diǎn)評(píng) 本題主要考查了偶函數(shù)的定義、函數(shù)的圖象與圖象變化,同時(shí)考查了解決問(wèn)題、分析問(wèn)題的能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.將函數(shù)f(x)=2sin(2x-$\frac{π}{3}$)+1的圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$,所得圖象的一個(gè)對(duì)稱中心可能是( 。
A.($\frac{π}{3}$,0)B.($\frac{2π}{3}$,0)C.($\frac{π}{3}$,1)D.($\frac{2π}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=ln(x+1)-ax(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求f(x)的最大值;
(Ⅱ)是否存在實(shí)數(shù)a,使得關(guān)于x的不等式f(x)<0在(0,+∞)上恒成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)求證:($\frac{1}{n}$+1)n<e,n∈N*(其中e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知三棱柱ABC-A1B1C1的側(cè)棱與底面邊長(zhǎng)都相等,A1在底面ABC上的射影為BC的中點(diǎn),則異面直線AB與CC1所成的角的余弦值為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{5}}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列函數(shù)中,是偶函數(shù),且在區(qū)間(0,1)上為增函數(shù)的是( 。
A.y=|x|B.y=1-xC.y=$\frac{1}{x}$D.y=-x2+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列說(shuō)法正確的是(  )
A.命題“若a≥b,則a2≥b2”的逆否命題為“若a2≤b2,則a≤b”
B.“x=1”是“x2-3x+2=0”的必要不充分條件
C.若p∧q為假命題,則p,q均為假命題
D.對(duì)于命題p:?x∈R,x2+x+1>0,則¬p:?x0∈R,x02+x0+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=x2+2x-3,則f(-5)=( 。
A.-38B.12C.17D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在等比數(shù)列{an}中,已知a1=2,a3=6,那么a5等于(  )
A.8B.10C.18D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知集合A={1,2,3,4},B={y|y=x+1,x∈A},則A∩B={2,3,4}.

查看答案和解析>>

同步練習(xí)冊(cè)答案