12.在如圖所示的四棱錐P-ABCD中,已知PA⊥平面ABCD,AD∥BC,∠BAD=90°,PA=AB=BC=1,AD=2,E為PD的中點.
(Ⅰ)求證:平面PAC⊥平面PDC;
(Ⅱ)求直線EC與平面PAC所成角的正切值.

分析 (Ⅰ)推導(dǎo)出PA⊥DC,DC⊥AC,從而DC⊥平面PAC,由此能證明平面PAC⊥平面PDC.
(Ⅱ)取PC中點F,則EF∥DC,從而EF⊥平面PAC,∠ECF為直線EC與平面PAC所成的角,由此能求出直線EC與平面PAC所成角的正切值.

解答 證明:(Ⅰ)∵PA⊥平面ABCD,∴PA⊥DC,
又AC2+CD2=2+2=AD2,
∴DC⊥AC,
∵AC∩PA=A,
∴DC⊥平面PAC,又DC?平面PDC,
∴平面PAC⊥平面PDC.
解:(Ⅱ)取PC中點F,則EF∥DC,
由(Ⅰ)知DC⊥平面PAC,則EF⊥平面PAC,
∠ECF為直線EC與平面PAC所成的角
CF=$\frac{1}{2}$PC=$\frac{\sqrt{3}}{2}$,EF=$\frac{1}{2}$CD=$\frac{\sqrt{2}}{2}$,
∴tan$∠ECF=\frac{EF}{FC}$=$\frac{\sqrt{6}}{3}$,
即直線EC與平面PAC所成角的正切值為$\frac{{\sqrt{6}}}{3}$.

點評 本題考查面面垂直的證明,考查線面所成角的正切值的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.O是面α上一定點,A,B,C是面α上△ABC的三個頂點,∠B,∠C分別是邊AC,AB的對角.以下命題正確的是②③④⑤.(把你認(rèn)為正確的序號全部寫上)
①動點P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$,則△ABC的外心一定在滿足條件的P點集合中;
②動點P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|}}$)(λ>0),則△ABC的內(nèi)心一定在滿足條件的P點集合中;
③動點P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|sinB}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|sinC}}$)(λ>0),則△ABC的重心一定在滿足條件的P點集合中;
④動點P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|cosC}}$)(λ>0),則△ABC的垂心一定在滿足條件的P點集合中.
⑤動點P滿足$\overrightarrow{OP}$=$\frac{{\overrightarrow{OB}+\overrightarrow{OC}}}{2}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|cosC}}$)(λ>0),則△ABC的外心一定在滿足條件的P點集合中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,AB切⊙O于點B,直線AO交⊙O于D,E兩點,BC⊥DE,垂足為C,∠CBD=30°.
(1)證明:∠DBA=30°;
(2)若BC=$\sqrt{2}$,求AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),且f′(x)=x2+2x-8,則函數(shù)y=f(x+2)的單調(diào)遞減區(qū)間為(  )
A.(-2,4)B.(-6,0)C.(-4,2)D.(0,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a∈R,p:關(guān)于x的方程x2+2x+a=0有兩個不等實根;q:方程$\frac{{x}^{2}}{a-3}$+$\frac{{y}^{2}}{a+1}$=1表示雙曲線,若“p∨q”為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.對于函數(shù)f(x)=x${\;}^{\frac{1}{2}}}$定義域內(nèi)的任意x1,x2且x1≠x2,給出下列結(jié)論:
(1)f(x1+x2)=f(x1)•f(x2
(2)f(x1•x2)=f(x1)•f(x2
(3)$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0
(4)f($\frac{{{x_1}+{x_2}}}{2}$)>$\frac{{f({x_1})+f({x_2})}}{2}$
其中正確結(jié)論為:(2)(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線x+$\sqrt{3}$y=0的傾斜角為(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={0,1},B={(x,y)|x∈A,y∈A},則B中所含元素的個數(shù)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將$\frac{1}{12}$[2(2$\overrightarrow{a}$+8$\overrightarrow$)-4(4$\overrightarrow{a}$-2$\overrightarrow$)]化成最簡式為( 。
A.-2$\overrightarrow{a}$+$\overrightarrow$B.-2$\overrightarrow{a}$-$\overrightarrow$C.-$\overrightarrow{a}$+2$\overrightarrow$D.-$\overrightarrow{a}$-2$\overrightarrow$

查看答案和解析>>

同步練習(xí)冊答案